TY - THES A1 - Rausch, Theresa T1 - Role of intestinal bacteria in the conversion of dietary sulfonates N2 - Over the last decades, interest in the impact of the intestinal microbiota on host health has steadily increased. Diet is a major factor that influences the gut microbiota and thereby indirectly affects human health. For example, a high fat diet rich in saturated fatty acids led to an intestinal proliferation of the colitogenic bacterium Bilophila (B.) wadsworthia by stimulating the release of the bile acid taurocholate (TC). TC contains the sulfonated head group taurine, which undergoes conversion to sulfide (H2S) by B. wadsworthia. In a colitis prone murine animal model (IL10 / mice), the bloom of B. wadsworthia was accompanied by an exacerbation of intestinal inflammation. B. wadsworthia is able to convert taurine and also other sulfonates to H2S, indicating the potential association of sulfonate utilization and the stimulation of colitogenic bacteria. This potential link raised the question, whether dietary sulfonates or their sulfonated metabolites stimulate the growth of colitogenic bacteria such as B. wadsworthia and whether these bacteria convert sulfonates to H2S. Besides taurine, which is present in meat, fish and life-style beverages, other dietary sulfonates are part of daily human nutrition. Sulfolipids such as sulfoquinovosyldiacylglycerols (SQDG) are highly abundant in salad, parsley and the cyanobacterium Arthrospira platensis (Spirulina). Based on previous findings, Escherichia (E.) coli releases the polar headgroup sulfoquinovose (SQ) from SQDG. Moreover, E. coli is able to convert SQ to 2,3 dihydroxypropane 1 sulfonate (DHPS) under anoxic conditions. DHPS is also converted to H2S by B. wadsworthia or by other potentially harmful gut bacteria such as members of the genus Desulfovibrio. However, only few studies report the conversion of sulfonates to H2S by bacteria directly isolated from the human intestinal tract. Most sulfonate utilizing bacteria were obtained from environmental sources such as soil or lake sediment or from potentially intestinal sources such as sewage. In the present study, fecal slurries from healthy human subjects were incubated with sulfonates under strictly anoxic conditions, using formate and lactate as electron donors. Fecal slurries that converted sulfonates to H2S, were used as a source for the isolation of H2S forming bacteria. Isolates were identified based on their 16S ribosomal RNA (16S rRNA) gene sequence. In addition, conventional C57BL/6 mice were fed a semisynthetic diet supplemented with the SQDG rich Spirulina (SD) or a Spirulina free control diet (CD). During the intervention, body weight, water and food intake were monitored and fecal samples were collected. After three weeks, mice were killed and organ weight and size were measured, intestinal sulfonate concentrations were quantified, gut microbiota composition was determined and parameters of intestinal and hepatic fat metabolism were analyzed. Human fecal slurries converted taurine, isethionate, cysteate, 3 sulfolacate, SQ and DHPS to H2S. However, inter individual differences in the degradation of these sulfonates were observed. Taurine, isethionate, and 3 sulfolactate were utilized by fecal microbiota of all donors, while SQ, DHPS and cysteate were converted to H2S only by microbiota from certain individuals. Bacterial isolates from human feces able to convert sulfonates to H2S were identified as taurine-utilizing Desulfovibrio strains, taurine- and isethionate-utilizing B. wadsworthia, or as SQ- and 3-sulfolactate- utilizing E. coli. In addition, a co culture of E. coli and B. wadsworthia led to complete degradation of SQ to H2S, with DHPS as an intermediate. Of the human fecal isolates, B. wadsworthia and Desulfovibrio are potentially harmful. E. coli strains might be also pathogenic, but isolated E. coli strains from human feces were identified as commensal gut bacteria. Feeding SD to mice increased the cecal and fecal SQ concentration and altered the microbiota composition, but the relative abundance of SQDG or SQ converting bacteria and colitogenic bacteria was not enriched in mice fed SD for 21 days. SD did not affect the relative abundance of Enterobacteriaceae, to which the SQDG- and SQ-utilizing E. coli strain belong to. Furthermore, the abundance of B. wadsworthia decreased from day 2 to day 9 in feces, but recovered afterwards in the same mice. In cecum, the family Desulfovibrionaceae, to which B. wadsworthia and Desulfovibrio belong to, were reduced. No changes in the number of B. wadsworthia in cecal contents or of Desulfovibrionaceae in feces were observed. SD led to a mild activation of the immune system, which was not observed in control mice fed CD. Mice fed SD had an increased body weight, a higher adipose tissue weight, and a decreased liver weight compared to the control mice, suggesting an impact of Spirulina supplementation on fat metabolism. However, expression levels of genes involved in intestinal and hepatic intracellular lipid uptake and availability were reduced. Further investigations on the lipid metabolism at protein level could help to clarify these discrepancies. In summary, humans differ in the ability of their fecal microbiota to utilize dietary sulfonates. While sulfonates stimulated the proliferation of potentially colitogenic isolates from human fecal slurries, the increased availability of SQ in Spirulina fed conventional mice did not lead to an enrichment of such bacteria. Presence or absence of these bacteria may explain the inter individual differences in sulfonate conversion observed for fecal slurries. This work provides new insights in the ability of intestinal bacteria to utilize sulfonates and thus, contributes to a better understanding of microbiota-mediated effects on dietary sulfonate utilization. Interestingly, feeding of the Spirulina-supplemented diet led to body-weight gain in mice in the first two days of intervention, the reasons for which are unknown. N2 - Die Darmmikrobiota hat auf die menschliche Gesundheit einen großen Einfluss. Nahrungskom-ponente sind die Hauptquelle für bakterielle Substrate und beeinflussen somit das Wachstum von Darmbakterien. In einer Studie mit Mäusen führte z.B. eine Hochfettdiät zu einer erhöhten Freisetzung der Gallensäure Taurocholat (TC), was wiederum zur Anreicherung des kolitogenen Bakteriums Bilophila (B.) wadsworthia führte. In einem Interleukin-10-defizienten Maus-Model für Kolitis, führte eine erhöhte intestinale Verfügbarkeit von TC zu Darmentzündungen und Wachstum von B. wadsworthia. TC enthält den sulfonierten Taurin-Rest, der auch in Nahrungsmitteln wie Fisch und Fleisch enthalten ist, und von B. wadsworthia genutzt und zu Sulfid (H2S) reduziert werden kann. Bisher gibt es jedoch nur wenige Studien, welche die Umwandlung von Sulfonaten in H2S durch Darmbakterien belegen, wobei auch H2S mit Darmentzündungen in Verbindung gebracht wird. Aus diesen Literaturdaten resultierten die Fragen, ob Sulfonate aus der Nahrung das Wachstum von kolitogenen Bakterien wie B. wadsworthia stimulieren und ob diese Bakterien Sulfonate zu H2S umwandeln können. Weitere Nahrungsmittel-Sulfonate sind die Sulfolipide Sulfoquinovosyldiacylglycerole (SQDG) in Salaten, Petersilie und Spirulina. Escherichia (E.) coli kann Sulfoquinovose (SQ) aus SQDG abspalten und in 2,3-Dihydroxypropan-1-sulfonat (DHPS) umwandeln, welches wiederum von B. wadsworthia oder einem Desulfovibrio-Stamm, einem anderen potenziell kolitogenem Darmbakterium, verwendet und zu H2S reduziert werden kann. In der vorliegenden Arbeit wurden Fäzes-Suspensionen von gesunden Menschen unter strikt anoxischen Bedingungen mit Sulfonaten und Formiat und Laktat als Elektronendonoren inkubiert. Aus den Fäzes-Suspensionen wurden H2S-bildende Bakterienstämme isoliert und identifiziert. Zusätzlich wurden konventionelle C57BL/6-Mäuse mit einer semisynthetischen Diät, welche mit SQDG-reicher Spirulina supplementiert war (SD), gefüttert. Während des Versuchs wurde das Körpergewicht der Mäuse, deren Wasser- und Nahrungsaufnahme bestimmt und Fäzesproben gesammelt. Nach drei Wochen wurden die intestinale Sulfonatkonzentration, die Zusammensetzung der Mikrobiota und die Parameter des hepatischen und intestinalen Fettstoffwechsels bestimmt. Die Ergebnisse zeigten, dass humane Fäzes-Suspensionen Taurin, Isethionat, Cysteat, 3-Sulfolaktat, SQ und DHPS mit interindividuellen Unterschieden zu H2S umwandeln. Als Sulfonat-umsetzende Bakterien wurden Stämme der Gattung Desulfovibrio, B. wadsworthia oder E. coli isoliert, wobei die Desulfovibrio-Stämme Taurin, B. wadsworthia Taurin und Isethionat und E. coli SQ und 3-Sulfolaktat zu H2S reduzieren konnten. Eine Kokultivierung von E. coli und B. wadsworthia zeigte den vollständigen Abbau von SQ über DHPS zu H2S. Die Gabe von SD an Mäuse erhöhte die intestinale SQ-Konzentration und veränderte die Mikrobiota-Zusammensetzung, jedoch war die Zellzahl von SQDG- oder SQ-umwandelnden Bakterien und kolitogenen Bakterien nicht erhöht. Die Zellzahl von B. wadsworthia in denselben Mäusen von Tag 2 bis 9 ab, normalisierte sich danach aber wieder. Im Zäkum war die Familie der Desulfovibrionaceae reduziert, zu welcher B. wadsworthia und Desulfovibrio-Stämme gehören. SD führte zu einer schwachen Aktivierung des Immunsystems und zur Erhöhung des Körpergewichtes. Zusammenfassend lässt sich sagen, dass Darmbakterien in der Lage sind, Sulfonate aus der Nahrung mit interindividuellen Unterschieden zu verwerten. Das Vorkommen von Bakterien könnte diese Unterschiede erklären. Diese Studie ermöglicht es uns, die biologische Rolle der mit der Nahrung aufgenommenen Sulfonate zu verstehen und könnte neue Erkenntnisse über die Fähigkeit der Darmbakterien zur Verwertung von Sulfonaten liefern. T2 - Die Rolle von Darmbakterien bei der Umsetzung von Nahrungsmittel-Sulfonaten KW - microbiology KW - Bilophila wadsworthia KW - sulfide KW - intestinal KW - Bilophila wadsworthia KW - intestinal KW - Mikrobiologie KW - Sulfid KW - dietary sulfonates KW - Nahrungssulfonate Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-574036 ER - TY - THES A1 - Heise, Janine T1 - Phylogenetic and physiological characterization of deep-biosphere microorganisms in El’gygytgyn Crater Lake sediments T1 - Phylogenetische und physiologische Charakterisierung der Tiefen Biosphäre in El'gygytgyn Kraterseesedimenten N2 - The existence of diverse and active microbial ecosystems in the deep subsurface – a biosphere that was originally considered devoid of life – was discovered in multiple microbiological studies. However, most of the studies are restricted to marine ecosystems, while our knowledge about the microbial communities in the deep subsurface of lake systems and their potentials to adapt to changing environmental conditions is still fragmentary. This doctoral thesis aims to build up a unique data basis for providing the first detailed high-throughput characterization of the deep biosphere of lacustrine sediments and to emphasize how important it is to differentiate between the living and the dead microbial community in deep biosphere studies. In this thesis, up to 3.6 Ma old sediments (up to 317 m deep) of the El’gygytgyn Crater Lake were examined, which represents the oldest terrestrial climate record of the Arctic. Combining next generation sequencing with detailed geochemical characteristics and other environmental parameters, the microbial community composition was analyzed in regard to changing climatic conditions within the last 3.6 Ma to 1.0 Ma (Pliocene and Pleistocene). DNA from all investigated sediments was successfully extracted and a surprisingly diverse (6,910 OTUs) and abundant microbial community in the El’gygytgyn deep sediments were revealed. The bacterial abundance (10³-10⁶ 16S rRNA copies g⁻¹ sediment) was up to two orders of magnitudes higher than the archaeal abundance (10¹-10⁵) and fluctuates with the Pleistocene glacial/interglacial cyclicality. Interestingly, a strong increase in the microbial diversity with depth was observed (approximately 2.5 times higher diversity in Pliocene sediments compared to Pleistocene sediments). The increase in diversity with depth in the Lake El’gygytgyn is most probably caused by higher sedimentary temperatures towards the deep sediment layers as well as an enhanced temperature-induced intra-lake bioproductivity and higher input of allochthonous organic-rich material during Pliocene climatic conditions. Moreover, the microbial richness parameters follow the general trends of the paleoclimatic parameters, such as the paleo-temperature and paleo-precipitation. The most abundant bacterial representatives in the El’gygytgyn deep biosphere are affiliated with the phyla Proteobacteria, Actinobacteria, Bacteroidetes, and Acidobacteria, which are also commonly distributed in the surrounding permafrost habitats. The predominated taxon was the halotolerant genus Halomonas (in average 60% of the total reads per sample). Additionally, this doctoral thesis focuses on the live/dead differentiation of microbes in cultures and environmental samples. While established methods (e.g., fluorescence in situ hybridization, RNA analyses) are not applicable to the challenging El’gygytgyn sediments, two newer methods were adapted to distinguish between DNA from live cells and free (extracellular, dead) DNA: the propidium monoazide (PMA) treatment and the cell separation adapted for low amounts of DNA. The applicability of the DNA-intercalating dye PMA was successfully evaluated to mask free DNA of different cultures of methanogenic archaea, which play a major role in the global carbon cycle. Moreover, an optimal procedure to simultaneously treat bacteria and archaea was developed using 130 µM PMA and 5 min of photo-activation with blue LED light, which is also applicable on sandy environmental samples with a particle load of ≤ 200 mg mL⁻¹. It was demonstrated that the soil texture has a strong influence on the PMA treatment in particle-rich samples and that in particular silt and clay-rich samples (e.g., El’gygytgyn sediments) lead to an insufficient shielding of free DNA by PMA. Therefore, a cell separation protocol was used to distinguish between DNA from live cells (intracellular DNA) and extracellular DNA in the El’gygytgyn sediments. While comparing these two DNA pools with a total DNA pool extracted with a commercial kit, significant differences in the microbial composition of all three pools (mean distance of relative abundance: 24.1%, mean distance of OTUs: 84.0%) was discovered. In particular, the total DNA pool covers significantly fewer taxa than the cell-separated DNA pools and only inadequately represents the living community. Moreover, individual redundancy analyses revealed that the microbial community of the intra- and extracellular DNA pool are driven by different environmental factors. The living community is mainly influenced by life-dependent parameters (e.g., sedimentary matrix, water availability), while the extracellular DNA is dependent on the biogenic silica content. The different community-shaping parameters and the fact, that a redundancy analysis of the total DNA pool explains significantly less variance of the microbial community, indicate that the total DNA represents a mixture of signals of the live and dead microbial community. This work provides the first fundamental data basis of the diversity and distribution of microbial deep biosphere communities of a lake system over several million years. Moreover, it demonstrates the substantial importance of extracellular DNA in old sediments. These findings may strongly influence future environmental community analyses, where applications of live/dead differentiation avoid incorrect interpretations due to a failed extraction of the living microbial community or an overestimation of the past community diversity in the course of total DNA extraction approaches. N2 - Innerhalb der letzten 20 Jahre wurden diverse und aktive mikrobielle Gemeinschaften in zahlreichen Habitaten der tiefen Biosphäre gefunden, in denen zuvor kein Leben denkbar war. Die mikrobiologischen Untersuchungen beschränken sich dabei meist auf marine Ökosysteme, wohingegen das Wissen über die tiefe Biosphäre von Seesystemen und die Anpassung der Mikroorganismen an sich ändernde klimatische Bedingungen noch sehr eingeschränkt ist. Ziel dieser Arbeit ist es, die mikrobielle Gemeinschaftsstruktur der tiefen Biosphäre des El‘gygytgyn Kratersees in Hinblick auf klimatische Veränderungen der vergangenen 1,0 bis 3,6 Millionen Jahre zu charakterisieren, beeinflussende Umweltparameter zu detektieren und dabei zwischen der lebenden und toten mikrobiellen Gemeinschaft zu differenzieren. Die Seesedimente (43-317 m tief) weisen eine erstaunlich hohe Diversität (6910 OTUs) und Mikrobenfülle (10³-10⁶ bakterielle, 10¹-10⁵ archaeale 16S rRNA Kopien g⁻¹ Sediment) auf, wobei eine 2,5-fach höhere Diversität in den pliozänen Sedimenten im Vergleich zu den jüngeren pleistozänen Sedimenten detektiert werden konnte. Der Diversitätsanstieg mit zunehmendem Sedimentalter (und Tiefe) basiert höchstwahrscheinlich auf die erhöhte temperaturinduzierte Bioaktivität im See und dem erhöhten Eintrag von Organik reichen Material innerhalb des Pliozäns (feucht und warm). Die Unterscheidung zwischen der DNA lebender Mikroben (intrazellulare DNA) und freier DNA (extrazellulare DNA, meist von toten Mikroben) wurde durch die Adaption von zwei Extraktionsmethoden, der Behandlung mit Propidium-Monoazid (PMA) und der Zellseparation, erreicht. Dabei wurde ein PMA-Protokoll (130 µM PMA, 5 Min Lichtaktivierung mit blauen LEDs) zur erfolgreichen Behandlung von Reinkulturen methanogener Archaeen etabliert, das auch für sandige Umweltproben (Partikelbeladung ≤ 200 mg mL⁻¹) nutzbar ist. Für die feinporigeren Seesedimente des El’gygytgyn Kratersees wurden die zellseparierten DNA-Pools der iDNA und eDNA mit dem Gesamt-DNA-Extrakt (kommerzielles Kit) verglichen, wobei die DNA-Pools starke Unterschiede in ihrer Zusammensetzung aufzeigten (24,1% Distanz basierend auf relative Häufigkeiten) und der Gesamt-DNA-Extrakt die lebende mikrobielle Gemeinschaft nur unzureichend widerspiegeln konnte. Individuelle Redundanzanalysen (RDA) zeigten, dass die mikrobielle Gemeinschaft der iDNA von lebensbeeinflussenden Parametern abhängig ist (u.a. Sedimentmatrix, Wasserverfügbarkeit), wohingegen die der eDNA maßgeblich durch den Anteil an biogener Kieselerde (silica) beeinflusst wird. Diese Arbeit stellt die erste umfangreiche Datenbasis der Diversität und Verteilung von Mikroorganismengemeinschaften in der tiefen Biosphäre eines Seesystems über mehrere Millionen Jahre dar. Zusätzlich zeigt die Studie, dass die Lebend/Tot-Unterscheidung, mit dem ein höherer Anteil der Varianz innerhalb der Gemeinschaft durch Umweltparameter erklärt werden kann, im Vergleich zur Gesamt-DNA-Extraktion ein wesentlicher Schritt zur genauen Widerspiegelung der mikrobiellen Gemeinschaft und deren Funktion in der Tiefen Biosphäre ist. KW - Mikrobiologie KW - El`gygytgyn Kratersee KW - Tiefe Biosphäre KW - Diversität KW - microbiology KW - El’gygytgyn Crater Lake KW - diversity KW - deep biosphere Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-403436 ER - TY - THES A1 - Frank-Fahle, Béatrice A. T1 - Methane-cycling microbial communities in permafrost affected soils on Herschel Island and the Yukon Coast, Western Canadian Arctic T1 - Mikrobielle Gemeinschaften des Methankreislaufs in Permafrost beeinflussten Böden auf der Insel Herschel und an der Yukon-Küste, westliche kanadische Arktis N2 - Permafrost-affected ecosystems including peat wetlands are among the most obvious regions in which current microbial controls on organic matter decomposition are likely to change as a result of global warming. Wet tundra ecosystems in particular are ideal sites for increased methane production because of the waterlogged, anoxic conditions that prevail in seasonally increasing thawed layers. The following doctoral research project focused on investigating the abundance and distribution of the methane-cycling microbial communities in four different polygons on Herschel Island and the Yukon Coast. Despite the relevance of the Canadian Western Arctic in the global methane budget, the permafrost microbial communities there have thus far remained insufficiently characterized. Through the study of methanogenic and methanotrophic microbial communities involved in the decomposition of permafrost organic matter and their potential reaction to rising environmental temperatures, the overarching goal of the ensuing thesis is to fill the current gap in understanding the fate of the organic carbon currently stored in Artic environments and its implications regarding the methane cycle in permafrost environments. To attain this goal, a multiproxy approach including community fingerprinting analysis, cloning, quantitative PCR and next generation sequencing was used to describe the bacterial and archaeal community present in the active layer of four polygons and to scrutinize the diversity and distribution of methane-cycling microorganisms at different depths. These methods were combined with soil properties analyses in order to identify the main physico-chemical variables shaping these communities. In addition a climate warming simulation experiment was carried-out on intact active layer cores retrieved from Herschel Island in order to investigate the changes in the methane-cycling communities associated with an increase in soil temperature and to help better predict future methane-fluxes from polygonal wet tundra environments in the context of climate change. Results showed that the microbial community found in the water-saturated and carbon-rich polygons on Herschel Island and the Yukon Coast was diverse and showed a similar distribution with depth in all four polygons sampled. Specifically, the methanogenic community identified resembled the communities found in other similar Arctic study sites and showed comparable potential methane production rates, whereas the methane oxidizing bacterial community differed from what has been found so far, being dominated by type-II rather than type-I methanotrophs. After being subjected to strong increases in soil temperature, the active-layer microbial community demonstrated the ability to quickly adapt and as a result shifts in community composition could be observed. These results contribute to the understanding of carbon dynamics in Arctic permafrost regions and allow an assessment of the potential impact of climate change on methane-cycling microbial communities. This thesis constitutes the first in-depth study of methane-cycling communities in the Canadian Western Arctic, striving to advance our understanding of these communities in degrading permafrost environments by establishing an important new observatory in the Circum-Arctic. N2 - Permafrost beeinflusste Ökosysteme gehören zu den Regionen, in denen als Folge der globalen Erwärmung eine Veränderung des mikrobiell-kontrollierten Abbaus von organischem Material zu erwarten ist. Besonders in den Ökosystemen der feuchten Tundralandschaften kommt es zu einer verstärkten Methanpoduktion unter wassergesättigten und anoxischen Bedingungen, die durch immer tiefere saisonale Auftauschichten begünstigt werden. Die vorliegende Doktorarbeit kontenzentrierte sich auf die Untersuchung der Abundanz und Verteilung der am Methankreislauf beteiligten mikrobiellen Gemeinschaften in vier unterschiedlichen Polygonen auf der Insel Herschel und an der Yukon Küste in Kanada. Trotz des relevanten Beitrags der kanadischen West-Arktis am globalen Methanhaushalt, sind die dortigen mikrobiellen Gemeinschaften im Permafrost bisher nur unzureichend untersucht worden. Die zentrale Zielstellung der vorliegenden Arbeit besteht darin, die derzeitige Lücke im Verständnis der Kohlenstoffdynamik in der Arktis im Zuge von Klimaveränderungen und deren Bedeutung für den Methankreislauf in Permafrost-Ökosystemen zu schließen. Dies erfolgt durch Untersuchungen der am Abbau der organischen Substanz im Permafrost beteiligten methonogenen und methanothrophen mikrobiellen Gemeinschaften und ihrer möglichen Reaktionen auf steigende Umgebungstemperaturen. Um dieses Ziel zu erreichen, wurde ein Multiproxy-Ansatz gewählt, der die Analyse der Gemeinschaften mittels genetischen Fingerprintmethoden, Klonierung, quantitativer PCR und moderner Hochdurchsatzsequenzierung („Next Generation Sequencing“) beinhaltet, um die in der Auftauschicht der vier untersuchten Polygone vorhandenen Bakterien- und Archaeen-Gemeinschaften zu charakterisieren sowie die Diversität und Verteilung der am Methankreislauf beteiligten Mikroorganismen in unterschiedlicher Tiefe eingehend zu analysieren. Diese Studien wurden mit physikalisch-chemischen Habitatuntersuchungen kombiniert, da diese die mikrobiellen Lebensgemeinschaften maßgeblich beeinflussen. Zusätzlich wurde ein Laborexperiment zur Simulation der Klimaerwärmung an intakten Bodenmonolithen von der Insel Herschel durchgeführt, um die Veränderungen der am Methankreislauf beteiligten Gemeinschaften aufgrund steigender Bodentemperaturen zu untersuchen, sowie sicherere Voraussagen bezüglich der Methanfreisetzung in polygonalen Permafrostgebieten im Zusammenhang mit dem Klimawandel treffen zu können. KW - Permafrost KW - Mikrobiologie KW - Methan KW - Kohlenstoff KW - Arktis KW - Permafrost KW - microbiology KW - methane KW - carbon KW - Arctic Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-65345 ER -