TY - JOUR A1 - Baptista, Murilo da Silva A1 - Kurths, Jürgen T1 - Chaotic channel N2 - This work combines the theory of chaotic synchronization with the theory of information in order to introduce the chaotic channel, an active medium formed by connected chaotic systems. This subset of a large chaotic net represents the path along which information flows. We show that the possible amount of information exchange between the transmitter, where information enters the net, and the receiver, the destination of the information, is proportional to the level of synchronization between these two special subsystems Y1 - 2005 SN - 1539-3755 ER - TY - JOUR A1 - Baptista, Murilo da Silva A1 - Pereira, Tiago A1 - Sartorelli, J. C. A1 - Caldas, Ibere Luiz A1 - Kurths, Jürgen T1 - Non-transitive maps in phase synchronization N2 - Concepts from Ergodic Theory are used to describe the existence of special non-transitive maps in attractors of phase synchronous chaotic oscillators. In particular, it is shown that, for a class of phase-coherent oscillators, these special maps imply phase synchronization. We illustrate these ideas in the sinusoidally forced Chua's circuit and two coupled Rossler oscillators. Furthermore, these results are extended to other coupled chaotic systems. In addition, a phase for a chaotic attractor is defined from the tangent vector of the flow. Finally, it is discussed how these maps can be used for the real-time detection of phase synchronization in experimental systems. (c) 2005 Elsevier B.V. All rights reserved Y1 - 2005 ER - TY - JOUR A1 - Beim Graben, Peter A1 - Frisch, Stefan A1 - Fink, A. A1 - Saddy, Douglas A1 - Kurths, Jürgen T1 - Topographic voltage and coherence mapping of brain potentials by means of the symbolic resonance analysis N2 - We apply the recently developed symbolic resonance analysis to electroencephalographic measurements of event- related brain potentials (ERPs) in a language processing experiment by using a three-symbol static encoding with varying thresholds for analyzing the ERP epochs, followed by a spin-flip transformation as a nonlinear filter. We compute an estimator of the signal-to-noise ratio (SNR) for the symbolic dynamics measuring the coherence of threshold-crossing events. Hence, we utilize the inherent noise of the EEG for sweeping the underlying ERP components beyond the encoding thresholds. Plotting the SNR computed within the time window of a particular ERP component (the N400) against the encoding thresholds, we find different resonance curves for the experimental conditions. The maximal differences of the SNR lead to the estimation of optimal encoding thresholds. We show that topographic brain maps of the optimal threshold voltages and of their associated coherence differences are able to dissociate the underlying physiological processes, while corresponding maps gained from the customary voltage averaging technique are unable to do so Y1 - 2005 SN - 1539-3755 ER - TY - JOUR A1 - Belykh, Vladimir N. A1 - Osipov, Grigory V. A1 - Kuckländer, Nina A1 - Blasius, Bernd A1 - Kurths, Jürgen T1 - Automatic control of phase synchronization in coupled complex oscillators N2 - We present an automatic control method for phase locking of regular and chaotic non-identical oscillations, when all subsystems interact via feedback. This method is based on the well known principle of feedback control which takes place in nature and is successfully used in engineering. In contrast to unidirectional and bidirectional coupling, the approach presented here supposes the existence of a special controller, which allows to change the parameters of the controlled systems. First we discuss general principles of automatic phase synchronization (PS) for arbitrary coupled systems with a controller whose input is given by a special quadratic form of coordinates of the individual systems and its output is a result of the application of a linear differential operator. We demonstrate the effectiveness of our approach for controlled PS on several examples: (i) two coupled regular oscillators, (ii) coupled regular and chaotic oscillators, (iii) two coupled chaotic R"ossler oscillators, (iv) two coupled foodweb models, (v) coupled chaotic R"ossler and Lorenz oscillators, (vi) ensembles of locally coupled regular oscillators, (vii) ensembles of locally coupled chaotic oscillators, and (viii) ensembles of globally coupled chaotic oscillators. Y1 - 2005 UR - http://www.agnld.uni-potsdam.de/~bernd/papers/physica_D.pdf ER - TY - JOUR A1 - Bittmann, Frank A1 - Gutschow, Stephan A1 - Luther, Sven A1 - Wessel, Niels A1 - Kurths, Jürgen T1 - On the functional relationship between postural motor balance and performance at school N2 - In integrated medical considerations of the biological human system, both intellectual and motor performances in a similar manner are considered as a result of the function of the nervous system. Consequently, universal minimal dysfunctions of the central nervous system may lead to both intellectual and physical anomalies. Therefore, this study tests the hypothesis that there is a connection between the balance ability as a motor parameter and school success as an intellectual parameter. A postural measuring system based on the force-moment sensor technique was used to record the postural balance regulation of 773 children (circle divide 11 +/- 1 years). The school achievement of each child was determined by school grades. Data analysis was performed by linear as well as by nonlinear time series analyses. There are highly significant differences in balance regulation between good and poor pupils recognized by several linear and nonlinear parameters. Good pupils could be discriminated from pupils with bad results in learning to 80 %. The results support the hypothesis mentioned above. One possible explanation for the poor regulation of balance in bad learners could be a deficit in the neural maturity. In future, further developments will be targeted on higher discrimination levels, possibly in order to predict school success. On the other hand, the effects of special movement exercises on the neural development in childhood will be the focus in our further work Y1 - 2005 ER - TY - JOUR A1 - Feudel, Fred A1 - Witt, Annette A1 - Gellert, Marcus A1 - Kurths, Jürgen A1 - Grebogi, Celso A1 - Sanjuan, Miguel Angel Fernandez T1 - Intersections of stable and unstable manifolds : the skeleton of Lagrangian chaos N2 - We study Hamiltonian chaos generated by the dynamics of passive tracers moving in a two-dimensional fluid flow and describe the complex structure formed in a chaotic layer that separates a vortex region from the shear flow. The stable and unstable manifolds of unstable periodic orbits are computed. It is shown that their intersections in the Poincare map as an invariant set of homoclinic points constitute the backbone of the chaotic layer. Special attention is paid to the finite time properties of the chaotic layer. In particular, finite time Lyapunov exponents are computed and a scaling law of the variance of their distribution is derived. Additionally, the box counting dimension as an effective dimension to characterize the fractal properties of the layer is estimated for different duration times of simulation. Its behavior in the asymptotic time limit is discussed. By computing the Lyapunov exponents and by applying methods of symbolic dynamics, the formation of the layer as a function of the external forcing strength, which in turn represents the perturbation of the originally integrable system, is characterized. In particular, it is shown that the capture of KAM tori by the layer has a remarkable influence on the averaged Lyapunov exponents. (C) 2004 Elsevier Ltd. All rights reserved Y1 - 2005 ER - TY - JOUR A1 - Kitajima, H. A1 - Kurths, Jürgen T1 - Synchronized firing of FitzHugh-Nagumo neurons by noise N2 - We investigate the influence of noise on synchronization between the spiking activities of neurons with external impulsive forces. We first analyze the dependence of the synchronized firing on the amplitude and the angular frequency of the impulsive force in the noise-free system. Three cases (regular spiking, traveling wave, and chaotic spiking) with low synchronized firing are chosen to study effects due to noise. In each case we find that small noise can be a promoter of synchronization phenomena in neural activities, by choosing an appropriate noise intensity acting on some of the neurons. (C) 2005 American Institute of Physics Y1 - 2005 SN - 1054-1500 ER - TY - JOUR A1 - Maraun, Douglas A1 - Kurths, Jürgen T1 - Epochs of phase coherence between El Nino/Southern Oscillation and Indian monsoon N2 - We present a modern method used in nonlinear time series analysis to investigate the relation of two oscillating systems with respect to their phases, independently of their amplitudes. We study the difference of the phase dynamics between El Nino/Southern Oscillation (ENSO) and the Indian Monsoon on inter-annual time scales. We identify distinct epochs, especially two intervals of phase coherence, 1886 - 1908 and 1964 - 1980, corroborating earlier findings from a new point of view. A significance test shows that the coherence is very unlikely to be the result of stochastic fluctuations. We also detect so far unknown periods of coupling which are invisible to linear methods. These findings suggest that the decreasing correlation during the last decades might be a typical epoch of the ENSO/ Monsoon system having occurred repeatedly. The high time resolution of the method enables us to present an interpretation of how volcanic radiative forcing could cause the coupling Y1 - 2005 SN - 0094-8276 ER - TY - JOUR A1 - Marwan, Norbert A1 - Kurths, Jürgen T1 - Line structures in recurrence plots N2 - Recurrence plots exhibit line structures which represent typical behaviour of the investigated system. The local slope of these line structures is connected with a specific transformation of the time scales of different segments of the phase-space trajectory. This provides us a better understanding of the structures occurring in recurrence plots. The relationship between the time-scales and line structures are of practical importance in cross recurrence plots. Using this relationship within cross recurrence plots, the time-scales of differently sampled or time- transformed measurements can be adjusted. An application to geophysical measurements illustrates the capability of this method for the adjustment of time-scales in different measurements. (C) 2005 Elsevier B.V. All rights reserved Y1 - 2005 SN - 0375-9601 ER - TY - JOUR A1 - Meinecke, Frank C. A1 - Ziehe, Andreas A1 - Kurths, Jürgen A1 - Müller, Klaus-Robert T1 - Measuring phase synchronization of superimposed signals N2 - Phase synchronization is an important phenomenon that occurs in a wide variety of complex oscillatory processes. Measuring phase synchronization can therefore help to gain fundamental insight into nature. In this Letter we point out that synchronization analysis techniques can detect spurious synchronization, if they are fed with a superposition of signals such as in electroencephalography or magnetoencephalography data. We show how techniques from blind source separation can help to nevertheless measure the true synchronization and avoid such pitfalls Y1 - 2005 SN - 0031-9007 ER - TY - JOUR A1 - Motter, Adilson E. A1 - Zhou, Changsong A1 - Kurths, Jürgen T1 - Enhancing complex-network synchronization N2 - Heterogeneity in the degree (connectivity) distribution has been shown to suppress synchronization in networks of symmetrically coupled oscillators with uniform coupling strength (unweighted coupling). Here we uncover a condition for enhanced synchronization in weighted networks with asymmetric coupling. We show that, in the optimum regime, synchronizability is solely determined by the average degree and does not depend on the system size and the details of the degree distribution. In scale-free networks, where the average degree may increase with heterogeneity, synchronizability is drastically enhanced and may become positively correlated with heterogeneity, while the overall cost involved in the network coupling is significantly reduced as compared to the case of unwcighted coupling Y1 - 2005 SN - 0295-5075 ER - TY - JOUR A1 - Motter, Adilson E. A1 - Zhou, Changsong A1 - Kurths, Jürgen T1 - Network synchronization, diffusion, and the paradox of heterogeneity N2 - Many complex networks display strong heterogeneity in the degree (connectivity) distribution. Heterogeneity in the degree distribution often reduces the average distance between nodes but, paradoxically, may suppress synchronization in networks of oscillators coupled symmetrically with uniform coupling strength. Here we offer a solution to this apparent paradox. Our analysis is partially based on the identification of a diffusive process underlying the communication between oscillators and reveals a striking relation between this process and the condition for the linear stability of the synchronized states. We show that, for a given degree distribution, the maximum synchronizability is achieved when the network of couplings is weighted and directed and the overall cost involved in the couplings is minimum. This enhanced synchronizability is solely determined by the mean degree and does not depend on the degree distribution and system size. Numerical verification of the main results is provided for representative classes of small-world and scale-free networks Y1 - 2005 SN - 1063-651X ER - TY - JOUR A1 - Osipov, Grigory V. A1 - Ivanchenko, Mikhail V. A1 - Kurths, Jürgen A1 - Hu, B. T1 - Synchronized chaotic intermittent and spiking behavior in coupled map chains N2 - We study phase synchronization effects in a chain of nonidentical chaotic oscillators with a type-I intermittent behavior. Two types of parameter distribution, linear and random, are considered. The typical phenomena are the onset and existence of global (all-to-all) and cluster (partial) synchronization with increase of coupling. Increase of coupling strength can also lead to desynchronization phenomena, i.e., global or cluster synchronization is changed into a regime where synchronization is intermittent with incoherent states. Then a regime of a fully incoherent nonsynchronous state (spatiotemporal intermittency) appears. Synchronization-desynchronization transitions with increase of coupling are also demonstrated for a system resembling an intermittent one: a chain of coupled maps replicating the spiking behavior of neurobiological networks Y1 - 2005 SN - 1539-3755 ER - TY - JOUR A1 - Romano, Maria Carmen A1 - Thiel, M. A1 - Kurths, Jürgen A1 - Kiss, Istvan Z. A1 - Hudson, J. L. T1 - Detection of synchronization for non-phase-coherent and non-stationary data N2 - We present a new method to detect phase as well as generalized synchronization in a wide class of complex systems. It is based on the recurrences of the system's trajectory to the neighborhood of a former state in phase space. We illustrate the applicability of the algorithm for the paradigmatic chaotic Rossler system in the funnel regime and for noisy data, where other methods to detect phase synchronization fail. Furthermore, we demonstrate for electrochemical experiments that the method can easily detect phase and generalized synchronization in non-phase- coherent and even non-stationary time series Y1 - 2005 SN - 0295-5075 ER - TY - JOUR A1 - Saparin, P. I. A1 - Thomsen, J. S. A1 - Prohaska, Steffen A1 - Zaikin, Alexei A1 - Kurths, Jürgen A1 - Hege, H. C. A1 - Gowin, W. T1 - Quantification of spatial structure of human proximal tibial bone biopsies using 3D measures of complexity N2 - Changes in trabecular bone composition during development of osteoporosis are used as a model for bone loss in microgravity conditions during a space flight. Symbolic dynamics and measures of complexity are proposed and applied to assess quantitatively the structural composition of bone tissue from 3D data sets of human tibia bone biopsies acquired by a micro-CT scanner. In order to justify the newly proposed approach, the measures of complexity of the bone architecture were compared with the results of traditional 2D bone histomorphometry. The proposed technique is able to quantify the structural loss of the bone tissue and may help to diagnose and to monitor changes in bone structure of patients on Earth as well as of the space-flying personnel. © 2005 Elsevier Ltd. All rights reserved Y1 - 2005 SN - 0094-5765 ER - TY - JOUR A1 - Shabunin, A. A1 - Astakhov, Vladimir V. A1 - Kurths, Jürgen T1 - Quantitative analysis of chaotic synchronization by means of coherence N2 - We use an index of chaotic synchronization based on the averaged coherence function for the quantitative analysis of the process of the complete synchronization loss in unidirectionally coupled oscillators and maps. We demonstrate that this value manifests different stages of the synchronization breaking. It is invariant to time delay and insensitive to small noise and distortions, which can influence the accessible signals at measurements. Peculiarities of the synchronization destruction in maps and oscillators are investigated Y1 - 2005 SN - 1539-3755 ER - TY - JOUR A1 - Surovyatkina, E. D. A1 - Kravtsov, Y. A. A1 - Kurths, Jürgen T1 - Fluctuation growth and saturation in nonlinear oscillators on the threshold of bifurcation of spontaneous symmetry breaking N2 - We study prebifurcation fluctuation amplification in nonlinear oscillators subject to bifurcations of spontaneous symmetry breaking which are manifest in the doubling of stable equilibrium states. Our theoretical estimates of both the linear growth and the nonlinear saturation of the fluctuations are in good agreement with our results from numerical simulations. We show that in the saturation mode, the fluctuation variance is proportional to the standard deviation of the external noise, whereas in the linear mode, the fluctuation variance is proportional to the noise variance. It is demonstrated that the phenomenon of prebifurcation noise amplification is more pronounced in the case of a slow transition through the bifurcation point. The amplification of fluctuations in this case makes it easier to form a symmetric probability of the final equilibrium states. In contrast, for a fast transition through the bifurcation point, the effect of amplification is much less pronounced. Under backward and forward passages through the bifurcation point, a loop of noise-dependent hysteresis emerges here. We find that for a fast transition of the nonlinear oscillator through the bifurcation point, the probability symmetry of the final equilibrium states is destroyed Y1 - 2005 SN - 1539-3755 ER - TY - JOUR A1 - Viana, R. L. A1 - Grebogi, Celso A1 - Pinto, S. E. D. A1 - Lopes, S. R. A1 - Batista, A. M. A1 - Kurths, Jürgen T1 - Bubbling bifurcation : loss of synchronization and shadowing breakdown in complex systems N2 - Complex dynamical systems with many degrees of freedom may exhibit a wealth of collective phenomena related to high-dimensional chaos. This paper focuses on a lattice of coupled logistic maps to investigate the relationship between the loss of chaos synchronization and the onset of shadowing breakdown via unstable dimension variability in complex systems. In the neighborhood of the critical transition to strongly non-hyperbolic behavior, the system undergoes on-off intermittency with respect to the synchronization manifold. This has been confirmed by numerical diagnostics of synchronization and non-hyperbolic behavior, the latter using the statistical properties of finite-time Lyapunov exponents. (c) 2005 Elsevier B.V. All rights reserved Y1 - 2005 ER - TY - JOUR A1 - Volkov, E. I. A1 - Ullner, Ekkehard A1 - Kurths, Jürgen T1 - Stochastic multiresonance in the coupled relaxation oscillators N2 - We study the noise-dependent dynamics in a chain of four very stiff excitable oscillators of the FitzHugh- Nagumo type locally coupled by inhibitor diffusion. We could demonstrate frequency- and noise-selective signal acceptance which is based on several noise-supported stochastic attractors that arise owing to slow variable diffusion between identical excitable elements. The attractors have different average periods distinct from that of an isolated oscillator and various phase relations between the elements. We explain the correspondence between the noise-supported stochastic attractors and the observed resonance peaks in the curves for the linear response versus signal frequency. (C) 2005 American Institute of Physics Y1 - 2005 SN - 1054-1500 ER - TY - JOUR A1 - Zaikin, Alexei A1 - Kurths, Jürgen A1 - Saparin, Peter A1 - Gowin, W. A1 - Prohaska, Steffen T1 - Modeling bone resorption in 2D CT and 3D mu CT images N2 - We study several algorithms to simulate bone mass loss in two-dimensional and three-dimensional computed tomography bone images. The aim is to extrapolate and predict the bone loss, to provide test objects for newly developed structural measures, and to understand the physical mechanisms behind the bone alteration. Our bone model approach differs from those already reported in the literature by two features. First, we work with original bone images, obtained by computed tomography (CT); second, we use structural measures of complexity to evaluate bone resorption and to compare it with the data provided by CT. This gives us the possibility to test algorithms of bone resorption by comparing their results with experimentally found dependencies of structural measures of complexity, as well as to show efficiency of the complexity measures in the analysis of bone models. For two-dimensional images we suggest two algorithms, a threshold algorithm and a virtual slicing algorithm. The threshold algorithm simulates bone resorption on a boundary between bone and marrow, representing an activity of osteoclasts. The virtual slicing algorithm uses a distribution of the bone material between several virtually created slices to achieve statistically correct results, when the bone-marrow transition is not clearly defined. These algorithms have been tested for original CT 10 mm thick vertebral slices and for simulated 10 mm thick slices constructed from ten I mm thick slices. For three-dimensional data, we suggest a variation of the threshold algorithm and apply it to bone images. The results of modeling have been compared with CT images using structural measures of complexity in two- and three-dimensions. This comparison has confirmed credibility of a virtual slicing modeling algorithm for two-dimensional data and a threshold algorithm for three-dimensional data Y1 - 2005 SN - 0218-1274 ER -