TY - THES A1 - Heinz, Markus T1 - Synthese von Monomeren auf der Basis nachwachsender Rohstoffe und ihre Polymerisation T1 - Synthesis of Monomers based on Renewable Resources and their Polymerization N2 - Die vorliegende Arbeit thematisiert die Synthese und die Polymerisation von Monomeren auf der Basis nachwachsender Rohstoffe wie zum Beispiel in Gewürzen und ätherischen Ölen enthaltenen kommerziell verfügbaren Phenylpropanoiden (Eugenol, Isoeugenol, Zimtalkohol, Anethol und Estragol) und des Terpenoids Myrtenol sowie ausgehend von der Rinde einer Birke (Betula pendula) und der Korkeiche (Quercus suber). Ausgewählte Phenylpropanoide (Eugenol, Isoeugenol und Zimtalkohol) und das Terpenoid Myrtenol wurden zunächst in den jeweiligen Laurylester überführt und anschließend das olefinische Strukturelement epoxidiert, wobei 4 neue (2-Methoxy-4-(oxiran-2-ylmethyl)phenyldodecanoat, 2-Methoxy-4-(3-methyl-oxiran-2-yl)phenyldodecanoat, (3-Phenyloxiran-2-yl)methyldodecanoat, (7,7-Dimethyl-3-oxatricyclo[4.1.1.02,4]octan-2-yl)methyldodecanoat) und 2 bereits bekannte monofunktionelle Epoxide (2-(4-Methoxybenzyl)oxiran und 2-(4-Methoxyphenyl)-3-methyloxiran) erhalten wurden, die mittels 1H-NMR-, 13C-NMR- und FT-IR-Spektroskopie sowie mit DSC untersucht wurden. Die Photo-DSC Untersuchung der Epoxidmonomere in einer kationischen Photopolymerisation bei 40 °C ergab die maximale Polymerisationsgeschwindigkeit (Rpmax: 0,005 s-1 bis 0,038 s-1) sowie die Zeit (tmax: 13 s bis 26 s) bis zum Erreichen des Rpmax-Wertes und führte zu flüssigen Oligomeren, deren zahlenmittlerer Polymerisationsgrad mit 3 bis 6 mittels GPC bestimmt wurde. Die Umsetzung von 2-Methoxy-4-(oxiran-2-ylmethyl)phenyldodecanoat mit Methacrylsäure ergab ein Isomerengemisch (2-Methoxy-4-(2-hydroxy-3-(methacryloyloxy)propyl)phenyldodecanoat und 2-Methoxy-4-(2-(methacryl-oyloxy)-3-hydroxypropyl)phenyldodecanoat), das mittels Photo-DSC in einer freien radikalischen Photopolymerisation untersucht wurde (Rpmax: 0,105 s-1 und tmax: 5 s), die zu festen in Chloroform unlöslichen Polymeren führte. Aus Korkpulver und gemahlener Birkenrinde wurden selektiv 2 kristalline ω-Hydroxyfettsäuren (9,10-Epoxy-18-hydroxyoctadecansäure und 22-Hydroxydocosansäure) isoliert. Die kationische Photopolymerisation der 9,10-Epoxy-18-hydroxyoctadecansäure ergab einen nahezu farblosen transparenten und bei Raumtemperatur elastischen Film, welcher ein Anwendungspotential für Oberflächenbeschichtungen hat. Aus der Reaktion von 9,10-Epoxy-18-hydroxyoctadecansäure mit Methacrylsäure wurde ein bei Raumtemperatur flüssiges Gemisch aus zwei Konstitutionsisomeren (9,18-Dihydroxy-10-(methacryloyloxy)octadecansäure und 9-(Methacryloyloxy)-10,18-dihydroxyoctadecansäure) erhalten (Tg: -60 °C). Die radikalische Photopolymerisation dieser Konstitutionsisomere wurde ebenfalls mittels Photo-DSC untersucht (Rpmax: 0,098 s-1 und tmax: 3,8 s). Die Reaktion von 22-Hydroxydocosansäure mit Methacryloylchlorid ergab die kristalline 22-(Methacryloyloxy)docosansäure, welche ebenfalls in einer radikalischen Photopolymerisation mittels Photo-DSC untersucht wurde (Rpmax: 0,023 s-1 und tmax: 9,6 s). Die mittels AIBN in Dimethylsulfoxid initiierte Homopolymerisation der 22-(Methacryloyloxy)docosansäure und der Isomerengemische bestehend aus 2-Methoxy-4-(2-hydroxy-3-(methacryloyloxy)propyl)phenyldodecanoat und 2-Methoxy-4-(2-(methacryl-oyloxy)-3-hydroxypropyl)phenyldodecanoat sowie aus 9,18-Dihydroxy-10-(methacryloy-loxy)octadecansäure und 9-(Methacryloyloxy)-10,18-dihydroxyoctadecansäure ergab feste lösliche Polymere, die mittels 1H-NMR- und FT-IR-Spektroskopie, GPC (Poly(2-methoxy-4-(2-hydroxy-3-(methacryloyloxy)propyl)phenyldodecanoat / 2-methoxy-4-(2-(methacryloyloxy)-3-hydroxypropyl)phenyldodecanoat): Pn = 94) und DSC (Poly(2-methoxy-4-(2-hydroxy-3-(methacryloyloxy)propyl)phenyldodecanoat / 2-methoxy-4-(2-(methacryloyloxy)-3-hydroxypropyl)phenyldodecanoat): Tg: 52 °C; Poly(9,18-dihydroxy-10-(methacryloyloxy)-octadecansäure / 9-(methacryloyloxy)-10,18-dihydroxyoctadecansäure): Tg: 10 °C; Poly(22-(methacryloyloxy)docosansäure): Tm: 74,1 °C, wobei der Schmelzpunkt mit dem des Photopolymers (Tm = 76,8 °C) vergleichbar ist) charakterisiert wurden. Das bereits bekannte Monomer 4-(4-Methacryloyloxyphenyl)butan-2-on wurde ausgehend von 4-(4-Hydroxyphenyl)butan-2-on hergestellt, welches aus Birkenrinde gewonnen werden kann, und unter identischen Bedingungen für einen Vergleich mit den neuen Monomeren polymerisiert. Die freie radikalische Polymerisation führte zu Poly(4-(4-methacryloyloxyphenyl)butan-2-on) (Pn: 214 und Tg: 83 °C). Neben der Homopolymerisation wurde eine statistische Copolymerisation des Isomerengemisches 2-Methoxy-4-(2-hydroxy-3-(methacryl-oyloxy)propyl)phenyldodecanoat / 2-Methoxy-4-(2-(methacryloyloxy)-3-hydroxypropyl)-phenyldodecanoat mit 4-(4-Methacryloyloxyphenyl)butan-2-on untersucht, wobei ein äquimolarer Einsatz der Ausgangsmonomere zu einem Anstieg der Ausbeute, der Molmassenverteilung und der Dispersität des Copolymers (Tg: 44 °C) führte. Die unter Verwendung von Diethylcarbonat als „grünes“ Lösungsmittel mittels AIBN initiierten freien radikalischen Homopolymerisationen von 4-(4-Methacryloyloxyphenyl)butan-2-on und von Laurylmethacrylat ergaben vergleichbare Polymerisationsgrade der Homopolymere (Pn: 150), welche jedoch aufgrund ihrer Strukturunterschiede deutlich unterschiedliche Glasübergangstemperaturen hatten (Poly(4-(4-methacryloyloxyphenyl)butan-2-on): Tg: 70 °C, Poly(laurylmethacrylat) Tg: -49 °C. Eine statistische Copolymerisation äquimolarer Stoffmengen der beiden Monomere in Diethylcarbonat führte bei einer Polymerisationszeit von 60 Minuten zu einem leicht bevorzugten Einbau des 4-(4-Methacryloyloxyphenyl)butan-2-on in das Copolymer (Tg: 17 °C). Copolymerisationsdiagramme für die freien radikalischen Copolymerisationen von 4-(4-Methacryloyloxyphenyl)butan-2-on mit n-Butylmethacrylat beziehungsweise 2-(Dimethylamino)ethylmethacrylat (t: 20 min bis 60 min; Molenbrüche (X) für 4-(4-Methacryloyloxyphenyl)butan-2-on: 0,2; 0,4; 0,6 und 0,8) zeigten ein nahezu ideales azeotropes Copolymerisationsverhalten, obwohl ein leicht bevorzugter Einbau von 4-(4-Methacryloyloxyphenyl)butan-2-on in das jeweilige Copolymer beobachtet wurde. Dabei korreliert ein Anstieg der Ausbeute und der Glasübergangstemperatur der erhaltenen Copolymere mit einem zunehmenden Gehalt an 4-(4-Methacryloyloxyphenyl)butan-2-on im Reaktionsgemisch. Die unter Einsatz der modifizierten Gibbs-DiMarzio-Gleichung berechneten Glasübergangstemperaturen der Copolymere stimmten mit den gemessenen Werten gut überein. Das ist eine gute Ausgangsbasis für die Bestimmung der Glasübergangstemperatur eines Copolymers mit einer beliebigen Zusammensetzung. N2 - The subject of this work is the synthesis and polymerization of monomers based on renewable material e. g. commercially available phenylpropanoides (eugenol, iso-eugenol, cinnamyl alcohol, anethol, and estragol) containing in spices and essential oils, the terpenoid myrtenol, as well as material derived from the bark of a birch (Betula pendula) and cork oak (Quercus suber). Selected phenylpropanoides (eugenol, iso-eugenol and cinnamyl alcohol) and the terpenoid myrtenol were first transferred to the lauryl ester followed by epoxidation of the olefinic structure to yield 4 new (2-methoxy-4-(oxiran-2-ylmethyl)-phenyl dodecanoate, 2-methoxy-4-(3-methyloxiran-2-yl)phenyl dodecanoate, (3-phenyloxiran-2-yl)methyl dodecanoate, (7,7-dimethyl-3-oxatricyclo[4.1.1.02,4]octan-2-yl)methyl dodecanoate) and 2 already known monofunctional epoxides (2-(4-methoxybenzyl)oxirane and 2-(4-methoxy-phenyl)-3-methyloxirane), which were investigated using 1H-NMR-, 13C-NMR- and FT-IR- spectroscopy, and DSC. Photo-DSC investigation of the cationic polymerization of the epoxy monomers at 40 °C revealed the maximum polymerization rate (Rpmax: 0,005 s-1 to 0,038 s-1) and the time (tmax: 13 s to 26 s) to obtain the Rpmax value. Liquid oligomers were obtained with a number average degree of polymerization between 3 and 6, as determined by GPC. The reaction of 2-methoxy-4-(oxiran-2-ylmethyl)phenyl dodecanoate with methacrylic acid resulted in a mixture of isomers (2-methoxy-4-(2-hydroxy-3-(methacryloyloxy)propyl)-phenyl dodecanoate and 2-methoxy-4-(2-(methacryloyloxy)-3-hydroxypropyl)phenyl dodecanoate). Free radical photopolymerization of this isomeric mixture, studied by photo-DSC (Rpmax: 0,105 s-1 and tmax: 5 s), resulted in solid polymers that were insoluble in chloroform. Two crystalline ω-hydroxy fatty acids (9,10-epoxy-18-hydroxyoctadecanoic acid and 22-hydroxydocosanoic acid) were selectively isolated from cork powder and powdered birch bark. The cationic photopolymerization of 9,10-epoxy-18-hydroxyoctadecanoic acid resulted in a nearly colorless transparent film that was elastic at room temperature. Therefore, it has an application potential in the manufacture of coatings. The reaction of 9,10-epoxy-18-hydroxyoctadecanoic acid with methacrylic acid resulted in a mixture of two constitutional isomers (9,18-dihydroxy-10-(methacryloyloxy)octadecanoic acid and 9-(methacryloyloxy)-10,18-dihydroxyoctadecanoic acid), which is liquid at room temperature (Tg: -60 °C). The radical photopolymerization of these constitutional isomers was also studied by photo-DSC (Rpmax: 0,098 s-1 and tmax: 3,8 s). The reaction of 22-hydroxydocosanoic acid with methacryloyl chloride yielded crystalline 22-(methacryloyloxy)docosanoic acid, which was studied by photo-DSC in a radical photopolymerization (Rpmax: 0,023 s-1 and tmax: 9,6 s). The homopolymerization of both 22-(methacryloyloxy)docosanoic acid and the isomeric mixtures consisting of 2-methoxy-4-(2-hydroxy-3-(methacryloyloxy)propyl)phenyl dodecanoate and 2-methoxy-4-(2-(methacryloyloxy)-3-hydroxypropyl)phenyl dodecanoat as well as 9,18-dihydroxy-10-(methacryloyloxy)octadecanoic acid and 9-(methacryloyloxy)-10,18-dihydroxyoctadecanoic acid resulted in solid soluble polymers, which were characterized by 1H-NMR- and FT-IR-spectroscopy, GPC (poly(2-methoxy-4-(2-hydroxy-3-(methacryloyloxy)propyl)phenyl dodecanoat / 2-methoxy-4-(2-(methacryloyloxy)-3-hydroxy-propyl)phenyl dodecanoate): Pn = 94), and DSC (poly(2-methoxy-4-(2-hydroxy-3-(methacryloyloxy)propyl)phenyl dodecanoate / 2-methoxy-4-(2-(methacryloyloxy)-3-hydroxy-propyl)phenyl dodecanoate): Tg: 52 °C; poly(9,18-dihydroxy-10-(methacryloyloxy)-octadecanoic acid / 9-(methacryloyloxy)-10,18-dihydroxyoctadecanoic acid): Tg: 10 °C; poly(22-(methacryloyloxy)docosanoic acid): Tm: 74,1 °C, this melting temperature is comparable to that of the photopolymer (Tm = 76,8 °C)). The already known monomer 4-(4-methacryloyloxyphenyl)butane-2-one was synthesized from 4-(4-hydroxyphenyl)butan-2-one obtained from birch bark and polymerized under identical conditions for comparison with the new monomers. The free radical polymerization resulted in poly(4-(4-methacryloyloxyphenyl)butan-2-one) (Pn: 214 and Tg: 83 °C). Besides the homopolymerization, a random copolymerization of the 2-methoxy-4-(2-hydroxy-3-(methacryloyloxy)propyl)phenyl dodecanoate / 2-methoxy-4-(2-(methacryloyl-oxy)-3-hydroxypropyl)phenyl dodecanoate isomer mixture with 4-(4-methacryloyloxyphenyl)butan-2-one was also investigated, which resulted in an increase in the yield, molecular weight distribution and dispersity of the copolymer (Tg: 44 °C) at a stoichiometric ratio of the monomers. The application of diethyl carbonate as „green“ solvent in the free radical homopolymerization of both 4-(4-methacryloyloxyphenyl)butan-2-one and lauryl methacrylate initiated with AIBN resulted in a comparable degree of polymerization of the homopolymers obtained (Pn: 150). However, due to the structural differences of the monomer segments, different glass transition temperatures were obtained for poly(4-(4-methacryloyloxyphenyl)butan-2-one) (Tg: 70 °C) and poly(lauryl methacrylate) (Tg: -49 °C). A random copolymerization of a stoichiometric ratio of the monomers in diethyl carbonate resulted in a slightly preferential incorporation of the 4-(4-methacryloyloxyphenyl)butan-2-one in the copolymer (Tg: 17 °C) after a polymerization time of 60 min. Copolymerization diagrams for free radical copolymerizations of 4-(4-methacryloyloxyphenyl)butan-2-one with either n-butyl methacrylate or 2-(dimethylamino)ethyl methacrylate (t: 20 min to 60 min; molar fraction (X) for 4-(4-methacryloyloxyphenyl)butan-2-one: 0,2; 0,4; 0,6 and 0,8) showed an almost ideal azeotropic copolymerization behavior, although a slightly preferential incorporation of the 4-(4-methacryloyloxyphenyl)butan-2-one was observed in the copolymers. An increase in both yield and glass transition temperature of the copolymers obtained correlated with an increasing content on 4-(4-methacryloyloxyphenyl)butan-2-one in the reaction mixture. Good agreement was found between the glass transition temperatures calculated using the modified Gibbs-DiMarzio equation and the measured values for the copolymers. This is a good basis for determining the glass transition temperature of a copolymer of any composition. KW - photoinitiierte kationische Polymerisation KW - Epoxide KW - epoxidierte Phenylpropanoide KW - epoxidierte Terpene KW - Copolymerisationsdiagramme KW - freie radikalische Polymerisation KW - Glasübergangstemperaturen KW - Methacrylate KW - Molmassen KW - statistische Copolymere KW - 9,10-Epoxy-18-hydroxyoctadecansäure KW - biobasierte Methacrylate KW - biobasierte Monomere KW - nachwachsende Rohstoffe KW - 22-Hydroxydocosansäure KW - photoinitiierte Polymerisation KW - Polymerisation KW - Betula pendula KW - Quercus suber KW - Birke KW - Korkeiche KW - Biomasse KW - Birkenrinde KW - grüne Chemie KW - Polymere KW - photoinitiierte freie radikalische Polymerisation KW - 22-hydroxydocosanoic acid KW - 9,10-epoxy-18-hydroxyoctadecanoic acid KW - Betula pendula KW - biomass KW - birch KW - birch bark KW - copolymerization diagrams KW - Epoxides KW - Glass transition temperatures KW - Cork oak KW - Methacrylates KW - Molar masses KW - polymers KW - polymerization KW - Quercus suber KW - bio-based methacrylates KW - bio-based monomers KW - epoxidized phenylpropanoids KW - epoxidized terpenes KW - free radical polymerization KW - green chemistry KW - renewable raw materials KW - photoinitiated polymerization KW - photoinitiated free radical KW - photoinitiated cationic polymerization KW - random copolymers KW - photopolymerization KW - Baumrinde KW - Rinde KW - tree bark KW - bark KW - Photopolymerisation Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-637943 ER - TY - THES A1 - Ramírez Ríos, Liliana Patricia T1 - Superpara- and paramagnetic polymer colloids by miniemulsion processes N2 - Polymerverkapselte magnetische Nanopartikel versprechen, in der Zukunft sehr erfolgreich bei Anwendungen in der Biologie und der Medizin eingesetzt werden zu können z. B. in der Krebstherapie und als Kontrastmittel bei der magnetischen Kernspinresonanztomographie. Diese Arbeit zeigt, dass durch die interdisziplinäre Kombination verschiedener Techniken Herstellungsverfahren und Eigenschaften solcher Partikel verbessert werden können. Unter Miniemulsionen versteht man wässrige Dispersionen relativ stabiler Öltröpfchen, zwischen 30 und 50 nm Größe. Ein Nanometer (nm) ist der 1.000.000.000ste Teil eines Meters. Ein Haar ist ungefähr 60.000 Nanometer breit. Hergestellt werden Miniemulsionen durch Scherung eines Systems bestehend aus Öl, Wasser, Tensid (Seife) und einer weiteren Komponente, dem Hydrophob, das die Tröpfchen stabilisieren soll. Die Polymerisation von Miniemulsionen ermöglicht die Verkapselung anorganischer Materialen z. B. magnetischer Teilchen oder Gadolinium-haltiger Komponenten. Zu Optimierung des Verkapselung, ist es notwendig, die richtige Menge eines geeigneten Tensids zu finden. Die magnetischen polymerverkapselten Nanopartikel, die in einer wässrigen Trägerflüssigkeit dispergiert sind, zeigen in Abhängigkeit von Partikelgröße, Zusammensetzung, elektronischer Beschaffenheit, etc. ein sogenanntes superpara- oder paramagnetisches Verhalten. Superpara- oder paramagnetisches Verhalten bedeutet, dass die Flüssigkeiten in Anwesenheit äußerer Magnetfeldern ihre Fließfähigkeit beibehalten. Wenn das Magnetfeld entfernt wird, haben sie keine Erinnerung mehr daran, unter dem Einfluss eines Magnetfeldes gestanden zu haben, d. h., dass sie nach Abschalten des Magnetfeldes selbst nicht mehr magnetisch sind. Die Vorteile des Miniemulsionsverfahrens sind der hohe Gehalt und die homogene Verteilung magnetischer Teilchen in den einzelnen Nanopartikeln. Außerdem ermöglicht dieses Verfahren nanostrukturierte Kompositpartikel herzustellen, wie z. B polymerverkapselte Nanopartikel mit Nanoschichten bestehend aus magnetischen Molekülen. N2 - Combining the magnetic properties of a given material with the tremendous advantages of colloids can exponentially increase the advantages of both systems. This thesis deals with the field of magnetic nanotechnology. Thus, the design and characterization of new magnetic colloids with fascinating properties compared with the bulk materials is presented. Ferrofluids are referred to either as water or organic stable dispersions of superparamagnetic nanoparticles which respond to the application of an external magnetic field but lose their magnetization in the absence of a magnetic field. In the first part of this thesis, a three-step synthesis for the fabrication of a novel water-based ferrofluid is presented. The encapsulation of high amounts of magnetite into polystyrene particles can efficiently be achieved by a new process including two miniemulsion processes. The ferrofluids consist of novel magnetite polystyrene nanoparticles dispersed in water which are obtained by three-step process including coprecipitation of magnetite, its hydrophobization and further surfactant coating to enable the redispersion in water and the posterior encapsulation into polystyrene by miniemulsion polymerization. It is a desire to take advantage of a potential thermodynamic control for the design of nanoparticles, and the concept of "nanoreactors" where the essential ingredients for the formation of the nanoparticles are already in the beginning. The formulation and application of polymer particles and hybrid particles composed of polymeric and magnetic material is of high interest for biomedical applications. Ferrofluids can for instance be used in medicine for cancer therapy and magnetic resonance imaging. Superparamagnetic or paramagnetic colloids containing iron or gadolinium are also used as magnetic resonance imaging contrast agent, for example as a important tool in the diagnosis of cancer, since they enhance the relaxation of the water of the neighbouring zones. New nanostructured composites by the thermal decomposition of iron pentacarbonyl in the monomer phase and thereafter the formation of paramagnetic nanocomposites by miniemulsion polymerization are discussed in the second part of this thesis. In order to obtain the confined paramagnetic nanocomposites a two-step process was used. In the first step, the thermal decomposition of the iron pentacarbonyl was obtained in the monomer phase using oleic acid as stabilizer. In the second step, this iron-containing monomer dispersion was used for making a miniemulsion polymerization thereof. The addition of lanthanide complexes to ester-containing monomers such as butyl acrylate and subsequent polymerization leading to the spontaneous formation of highly organized layered nanocomposites is presented in the final part of this thesis. By an one-step miniemulsion process, the formation of a lamellar structure within the polymer nanoparticles is achieved. The magnetization and the NMR relaxation measurements have shown these new layered nanocomposites to be very apt for application as contrast agent in magnetic resonance imaging. T2 - Superpara- and paramagnetic polymer colloids by miniemulsion processes KW - Magnetisch KW - superparamagnetisch KW - paramagnetisch KW - Kolloid KW - Miniemulsion KW - Polymerisation KW - Ferrofluid KW - Überstrukturierte Komposite KW - Gadolinium KW - Lanthano KW - Magnetic KW - superparamagnetic KW - paramagnetic KW - colloid KW - miniemulsion KW - polymerization KW - ferrofluid KW - nanostructured composite KW - gadolinium KW - lanthanide Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-0001267 ER - TY - THES A1 - Schulte-Osseili, Christine T1 - Vom Monomer zum Glykopolymer T1 - From monomer to glycopolymer BT - Anwendung als Biofunktionalitäten auf Oberflächen und als Transportmoleküle BT - application as biofunctionalized surfaces and transport molecules N2 - Glykopolymere sind synthetische und natürlich vorkommende Polymere, die eine Glykaneinheit in der Seitenkette des Polymers tragen. Glykane sind durch die Glykan-Protein-Wechselwirkung verantwortlich für viele biologische Prozesse. Die Beteiligung der Glykanen in diesen biologischen Prozessen ermöglicht das Imitieren und Analysieren der Wechselwirkungen durch geeignete Modellverbindungen, z.B. der Glykopolymere. Dieses System der Glykan-Protein-Wechselwirkung soll durch die Glykopolymere untersucht und studiert werden, um die spezifische und selektive Bindung der Proteine an die Glykopolymere nachzuweisen. Die Proteine, die in der Lage sind, Kohlenhydratstrukturen selektiv zu binden, werden Lektine genannt. In dieser Dissertationsarbeit wurden verschiedene Glykopolymere synthetisiert. Dabei sollte auf einen effizienten und kostengünstigen Syntheseweg geachtet werden. Verschiedene Glykopolymere wurden durch funktionalisierte Monomere mit verschiedenen Zuckern, wie z.B. Mannose, Laktose, Galaktose oder N-Acetyl-Glukosamin als funktionelle Gruppe, hergestellt. Aus diesen funktionalisierten Glykomonomeren wurden über ATRP und RAFT-Polymerisation Glykopolymere synthetisiert. Die erhaltenen Glykopolymere wurden in Diblockcopolymeren als hydrophiler Block angewendet und die Selbstassemblierung in wässriger Lösung untersucht. Die Polymere formten in wässriger Lösung Mizellen, bei denen der Zuckerblock an der Oberfläche der Mizellen sitzt. Die Mizellen wurden mit einem hydrophoben Fluoreszenzfarbstoff beladen, wodurch die CMC der Mizellenbildung bestimmt werden konnte. Außerdem wurden die Glykopolymere als Oberflächenbeschichtung über „Grafting from“ mit SI-ATRP oder über „Grafting to“ auf verschiedene Oberflächen gebunden. Durch die glykopolymerbschichteten Oberflächen konnte die Glykan Protein Wechselwirkung über spektroskopische Messmethoden, wie SPR- und Mikroring Resonatoren untersucht werden. Hierbei wurde die spezifische und selektive Bindung der Lektine an die Glykopolymere nachgewiesen und die Bindungsstärke untersucht. Die synthetisierten Glykopolymere könnten durch Austausch der Glykaneinheit für andere Lektine adressierbar werden und damit ein weites Feld an anderen Proteinen erschließen. Die bioverträglichen Glykopolymere wären alternativen für den Einsatz in biologischen Prozessen als Transporter von Medikamenten oder Farbstoffe in den Körper. Außerdem könnten die funktionalisierten Oberflächen in der Diagnostik zum Erkennen von Lektinen eingesetzt werden. Die Glykane, die keine selektive und spezifische Bindung zu Proteinen eingehen, könnten als antiadsorptive Oberflächenbeschichtung z.B. in der Zellbiologie eingesetzt werden. N2 - Glycopolymers are synthetic and naturally occurring polymers that carry a gylcan unit in the side chain of the polymer. Glycans are responsible for many biological processes due to the glycn-protein interaction. The involvement of glcans in these biological processes enables the imitation and analysis of interactions by suitable model coumponds, e.g. glycopolymers. This system of glycan-protein interaction will be investigated and studied by glycopolymers in order to demonstrate the specific and selective binding of proteins to glycopolymers. The proteins that are able to selectively bind carbohydrate structures are called lectins. In this dissertation different glycopolymers were synthesized. Care should be taken to ensure an effficient and cost-effective synthesis route. Different glycopolymers were produced by functionalized monomers with different sugars, such as mannose, lactose, galactose or N-acetyl-glucosamine as functional group. From these functionalized glycomonomers, glycopolymers were synthesized via ATRP and RAFT polymerization. The glycopolymers obtained were used as hydrophilic blocks in diblock copolymers and self-assembly in aqueous solution was investigated. In aqueoussolution, the polymers formed micelles in which the sugar block sits on the surface of the micelles. The micelles were loaded with a hydrophobic fluorescent dxe, which made it possible to determine the CMC of micelle formation. In additiom, the glycopolymers were bound to various surfaces as surface coatings via “grafting from” with SI-ATRP or via “grafting to”. Through the glycopolymer-coated surfaces, the glycan-protein interaction could be investigated by spectroscpic measurement methods such as SPR and microring resonators. The specific and selective binding of lectins to the glycopolymers was detected and the binding strength was investigated. The synthesised glycopolymers could become adressable for other lectins by exchanging the glycan unit and thus open up a broad field of other proteins. The biocompatible glycopolymers would be an alternative for use in iological processes as transporters of drugs or dyes into the body. In addtion, the functionalised surfaces could be used in diagnostics for regognition of lectins. The glycan, which do nit bind selectively and specifically to proetins, could be used as anit-adsoptive surface coatings, e.g. in cell biology. KW - Glykopolymere KW - Polymerisation KW - Oberflächenbeschichtung KW - Lektine KW - Glykan-Protein-Wechselwirkung KW - glycopolymers KW - polymerization KW - surface modification KW - lectins KW - glycan-protein interaction Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-432169 ER - TY - THES A1 - Vacogne, Charlotte D. T1 - New synthetic routes towards well-defined polypeptides, morphologies and hydrogels T1 - Neue Syntheserouten zu wohldefinierten Polypeptiden, Morphologien und Hydrogelen N2 - Proteins are natural polypeptides produced by cells; they can be found in both animals and plants, and possess a variety of functions. One of these functions is to provide structural support to the surrounding cells and tissues. For example, collagen (which is found in skin, cartilage, tendons and bones) and keratin (which is found in hair and nails) are structural proteins. When a tissue is damaged, however, the supporting matrix formed by structural proteins cannot always spontaneously regenerate. Tailor-made synthetic polypeptides can be used to help heal and restore tissue formation. Synthetic polypeptides are typically synthesized by the so-called ring opening polymerization (ROP) of α-amino acid N-carboxyanhydrides (NCA). Such synthetic polypeptides are generally non-sequence-controlled and thus less complex than proteins. As such, synthetic polypeptides are rarely as efficient as proteins in their ability to self-assemble and form hierarchical or structural supramolecular assemblies in water, and thus, often require rational designing. In this doctoral work, two types of amino acids, γ-benzyl-L/D-glutamate (BLG / BDG) and allylglycine (AG), were selected to synthesize a series of (co)polypeptides of different compositions and molar masses. A new and versatile synthetic route to prepare polypeptides was developed, and its mechanism and kinetics were investigated. The polypeptide properties were thoroughly studied and new materials were developed from them. In particular, these polypeptides were able to aggregate (or self-assemble) in solution into microscopic fibres, very similar to those formed by collagen. By doing so, they formed robust physical networks and organogels which could be processed into high water-content, pH-responsive hydrogels. Particles with highly regular and chiral spiral morphologies were also obtained by emulsifying these polypeptides. Such polypeptides and the materials derived from them are, therefore, promising candidates for biomedical applications. N2 - Proteine, auch Polypeptide genannt, sind große Biomoleküle, die aus kleineren Aminosäuren bestehen. Diese sind zu langen Ketten miteinander verbunden, wie die Perlen auf einer Perlenkette. Sie werden in Zellen produziert, können in Tieren und Pflanzen gefunden werden und haben vielfältige Funktionen. Eine dieser Funktionen ist es, die umgebenen Zellen und Gewebe wie ein Gerüst zu stützen. Kollagen (welches in Haut, Knorpel, Sehnen und Knochen zu finden ist) und Keratin (welches in Haaren und Nägeln vorkommt) gehören zu diesen Strukturproteinen. Jedoch wenn ein Gewebe beschädigt ist, beispielsweise als Folge eines Unfalls, kann sich das Grundgerüst aus diesen Strukturproteinen manchmal nicht mehr selbst regenerieren. Maßgefertigte synthetische Polypeptide, können dafür verwendet werden, die Heilung und Wiederherstellung des Gewebes zu Unterstützen. Diese Polypeptide werden mit einer Reihe an chemischen Reaktionen synthetisiert, welche hauptsächlich darauf abzielen Aminosäuren miteinander zu verknüpfen. Synthetische Polypeptide sind weniger Komplex als die von Zellen hergestellten, natürlichen Polypeptide (Proteine). Während in den natürlichen Polypeptiden die Aminosäuren in einer von der DNA definierten Reihenfolge, welche als Sequenz bezeichnet wird, angeordnet sind, sind sie in synthetischen Polypeptiden zumeist zufällig verteilt. Die Konsequenz daraus ist, dass synthetische Polypeptide nicht immer so Leistungsfähig sind wie natürliche Proteine und ein durchdachtes Design benötigen. Zwei Aminosäuren wurden in dieser Dissertation sorgfältig ausgewählt und verwendet um eine Serie an Polypeptiden mit unterschiedlicher Zusammensetzung und Länge zu synthetisieren. Ein neuer und vielseitiger Syntheseweg wurde ebenfalls entwickelt und der zugrundeliegende Mechanismus untersucht. Die Polypeptide wurden gründlich analysiert und neue Materialien wurden aus ihnen entwickelt. In Lösung gebracht formten diese Fasern, ähnlich denen von Kollagen, welche sich wiederum zu robusten Netzwerken anordneten. Aus diesen Netzwerken ließen sich Hydrogele herstellen, welche in der Lage waren große Mengen an Wasser aufzunehmen. Diese Hydrogele wiederum stellen vielversprechende Kandidaten für biomedizinische Anwendungen dar. KW - polymer KW - chemistry KW - biomaterial KW - polymerization KW - kinetics KW - polypeptide KW - colloid KW - gelation KW - hydrogel KW - organogel KW - secondary structure KW - physical KW - NCA KW - N-carboxyanhydride KW - Polymer KW - Chemie KW - Biomaterial KW - Polymerisation KW - Kinetik KW - Polypeptid KW - Kolloid KW - Gelieren KW - Hydrogel KW - Organogel KW - Sekundärstruktur KW - physikalisch KW - NCA KW - N-carboxyanhydrid Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-396366 ER - TY - THES A1 - Walther, Sebastian T1 - Funktionalisierung von Ölsäuremethylester und Alkydharzen für die photoinduzierte radikalische Polymerisation im UV Bereich N2 - Die vorliegende Arbeit behandelt die Synthese und Charakterisierung von funktionalisierten Alkydharzen und die photoinduzierte Polymerisation dieser unter Einsatz einer Quecksilberdampflampe oder einer UV LED mit unterschiedlicher Lichtintensität. Der Fokus dieser Arbeit bestand in der gezielten Substitution der internalen Doppelbindungen der Fettsäureester durch reaktivere Gruppen, wie Acrylate oder Methacrylate, welche für Alkydharze in dieser Form so in der Literatur nicht beschrieben sind. Untersuchungen des Polymerisationsverhaltens dieser funktionalisierten Harze wurden mit der Photo DSC durchgeführt, wobei Bis – (4 – methoxybenzoyl) diethylgermanium als Photoinitiator diente. Die Ergebnisse haben gezeigt, dass die Harze radikalisch polymerisiert werden können und eine geringere Abhängigkeit von der Umgebungsatmosphäre (Luftsauerstoff bzw. Stickstoff) vorliegt. Dies ist so in der Literatur für funktionalisierte Alkydharze nicht bekannt. Abmischungen von unterschiedlichen Monomeren und funktionalisierten Harzen bewirkten eine Steigerung der Viskosität sowie eine Verringerung der Sauerstoffinhibierung im Zuge der photoinduzierten Polymerisation unter Luftsauerstoff für die Quecksilberdampflampe und der UV LED. Zur Untersuchung der sauerstoffinhibierenden Wirkung der Harze sind Synthesen unterschiedlicher, funktionalisierter Ölsäuremethylester als Modellsubstanzen durchgeführt worden. Ein verbessertes Polymerisationsverhalten und eine geringe Abhängigkeit von der Umgebungsatmosphäre konnte für die Modelle nachgewiesen werden. Zur Aufklärung des verbesserten Polymerisationsverhaltens sind gezielt Substituenten (Imidazol, Brom, Alkohol, Acetat) in den funktionalisierten Ölsäuremethylester eingebaut worden, um den Einfluss dieser aufzuzeigen. Im Rahmen dieser Synthesen sind neuartige Strukturen synthetisiert worden, welche so in der Literatur nicht beschrieben sind. Die Gegenüberstellung der Polymerisationszeit, der Umsatz der (Meth-)Acrylatgruppen sowie die Zeit zum Erreichen der maximalen Polymerisationsgeschwindigkeit unter Verwendung von unterschiedlichen UV Lichtquellen hat einen Einfluss der Substituenten auf das Polymerisationsverhalten gezeigt. N2 - The present work deals with the synthesis and characterization of functionalized alkyl resins and the photoinduced polymerization of them with different UV light sources. The focus of this work was the targeted substitution of the internal double bonds of fatty acid esters by more reactive groups such as acrylates or methacrylates, which are not described in the literature for alkyd resins in this form. Differences in the basic polymerizability of these functionalized resins were carried out with the Photo DSC, with Bis – (4 – methoxybenzoyl) diethylgermane serving as the photoinitiator. The results showed that the resins could be radically polymerized and also had a lower dependence on the ambient atmosphere. This is not described in the literature for functionalized alkyd resins. Blends of different monomers and the functionalized resins also showed that in addition to the increase in viscosity and the polymerizability of the monomers was improved under atmospheric oxygen. The reference used was methyl oleate, which had been functionalized via the same routes of synthesis and polymerized photochemically. In the context of these syntheses, novel monomers have been synthesized which are thus unknown in the literature.
The reference substances confirmed the behavior of the functionalized resins and showed improved polymerization behavior under atmospheric oxygen. To elucidate these properties, different functionalized methyl oleate have been synthesized to investigate the influence of the substituents on the polymerizability under atmospheric oxygen. In particular, the polymerization time, the conversion of the (meth) acrylate groups and the time to reach the maximum polymerization rate played a decisive role. T2 - Functionalization of methyl oleate and alkyd resins for the photoinduced radical polymerization in the UV region KW - UV KW - Alkydharze KW - Fettsäuren KW - Funktionalisierte Ölsäuremethylester KW - Polymerisation KW - Druckfarben KW - Alkyd resin KW - printing inks KW - fatty acids KW - functionalized methyl oleate KW - polymerization KW - UV Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-421467 ER -