TY - JOUR A1 - Debsharma, Tapas A1 - Schmidt, Bernd A1 - Laschewsky, Andre A1 - Schlaad, Helmut T1 - Ring-opening metathesis polymerization of unsaturated carbohydrate derivatives BT - levoglucosenyl alkyl ethers JF - Macromolecules : a publication of the American Chemical Society N2 - A series of biomass-derived levoglucosenyl alkyl ethers (alkyl = methyl, ethyl, n-propyl, isopropyl, and n-butyl) were synthesized and polymerized by ring-opening olefin metathesis polymerization using the Grubbs catalyst C793 at room temperature. Polymerizations were successfully performed in conventional solvents such as 1,4-dioxane and dichloromethane as well as in polar aprotic "green" solvents such as 2-methyltetrahydrofuran, dihydrolevoglucosenone (Cyrene), and ethyl acetate. The prepared polyacetals with degrees of polymerization of similar to 100 exhibit Schulz-Flory-type molar mass distributions and are thermoplastic materials with rather low glass transition temperatures in the range of 43-0 degrees C depending on the length of the alkyl substituent. Kinetic studies revealed that the polymerization proceeded rapidly to a steady state with a certain minimum monomer concentration threshold. When the steady state was reached, just about half of the [Ru] catalyst had been effective to initiate the polymerization, indicating that the initiation step was a slow process. The remaining catalyst was still active and did no longer react with monomers but with in-chain double bonds, cutting the formed polymer chains into shorter fragments. In the long term, all catalyst was consumed and propagating [Ru] chain ends were deactivated by the elimination of [Ru] from the chain ends to form inactive chains with terminal aldehyde groups. Y1 - 2021 U6 - https://doi.org/10.1021/acs.macromol.0c02821 SN - 0024-9297 SN - 1520-5835 VL - 54 IS - 6 SP - 2720 EP - 2728 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Dev, Akhil A1 - Rösler, Alexander A1 - Schlaad, Helmut T1 - Limonene as a renewable unsaturated hydrocarbon solvent for living anionic polymerization of β-myrcene JF - Polymer chemistry N2 - The acyclic monoterpene beta-myrcene is polymerized by anionic polymerization at room temperature using sec-butyllithium as the initiator and the cyclic monoterpene DL-limonene as an unsaturated hydrocarbon solvent. The polymerization is a living process and allows production of polymyrcenes with narrow molar mass distribution ((sic) similar to 1.06) and high content of 1,4 units (similar to 90%) as well as block copolymers. Y1 - 2021 U6 - https://doi.org/10.1039/d1py00570g SN - 1759-9954 SN - 1759-9962 VL - 12 IS - 21 SP - 3084 EP - 3087 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Keckeis, Philipp A1 - Zeller, Enriko A1 - Jung, Carina A1 - Besirske, Patricia A1 - Kirner, Felizitas A1 - Ruiz-Agudo, Cristina A1 - Schlaad, Helmut A1 - Cölfen, Helmut T1 - Modular toolkit of multifunctional block copoly(2-oxazoline)s for the synthesis of nanoparticles JF - Chemistry - a European journal N2 - Post-polymerization modification provides an elegant way to introduce chemical functionalities onto macromolecules to produce tailor-made materials with superior properties. This concept was adapted to well-defined block copolymers of the poly(2-oxazoline) family and demonstrated the large potential of these macromolecules as universal toolkit for numerous applications. Triblock copolymers with separated water-soluble, alkyne- and alkene-containing segments were synthesized and orthogonally modified with various low-molecular weight functional molecules by copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) and thiol-ene (TE) click reactions, respectively. Representative toolkit polymers were used for the synthesis of gold, iron oxide and silica nanoparticles. KW - block copolymers KW - click chemistry KW - nanoparticles KW - ring-opening KW - polymerization KW - surfactants Y1 - 2021 U6 - https://doi.org/10.1002/chem.202101327 SN - 0947-6539 SN - 1521-3765 VL - 27 IS - 32 SP - 8283 EP - 8287 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Lüdecke, Nils A1 - Schlaad, Helmut T1 - Inspired by mussel adhesive protein BT - hydrophilic cationic copoly(2-oxazoline)s carrying catecholic side chains JF - Polymer Chemistry N2 - A set of new functionalized poly(2-oxazoline) homopolymers and copolymers carrying protected catecholic side chains were prepared by microwave-assisted cationic ring-opening (co)polymerization. The copolymerizations of 2-ethyl-2-oxazoline with either 2-(3,4-dimethoxyphenyl)-, 2-(3,4-dimethoxybenzyl)-, or 2-(3,4-dimethoxycinnamyl)-2-oxazoline (comonomer ratio 90 : 10) produced gradient or random copolymers with narrow molar mass distributions. During the copolymerization with the 2-(3,4-dimethoxycinnamyl)-2-oxazoline, however, chain coupling reactions occurred at monomer conversions of >50%, supposedly via Michael-type addition of intermediately formed ketene N,O-acetal end groups to 3,4-dimethoxycinnamyl amide side chains. A poly[(2-ethyl-2-oxazoline)-grad-(2-(3,4-dimethoxyphenyl)-2-oxazoline)] was examplarily subjected to partial demethylation and acidic hydrolysis to give a hydrophilic copolymer carrying both catecholic and cationic units, which is designed as a bioinspired adhesive copolymer mimicking mussel adhesive protein. Y1 - 2021 U6 - https://doi.org/10.1039/d1py00679g SN - 1759-9962 VL - 12 IS - 37 SP - 5310 EP - 5319 PB - Royal Society of Chemistry CY - Cambridge ER -