TY - JOUR A1 - Song, Yu A1 - Li, Gang A1 - Nowak, Jacqueline A1 - Zhang, Xiaoqing A1 - Xu, Dongbei A1 - Yang, Xiujuan A1 - Huang, Guoqiang A1 - Liang, Wanqi A1 - Yang, Litao A1 - Wang, Canhua A1 - Bulone, Vincent A1 - Nikoloski, Zoran A1 - Hu, Jianping A1 - Persson, Staffan A1 - Zhang, Dabing T1 - The Rice Actin-Binding Protein RMD Regulates Light-Dependent Shoot Gravitropism JF - Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants N2 - Light and gravity are two key determinants in orientating plant stems for proper growth and development. The organization and dynamics of the actin cytoskeleton are essential for cell biology and critically regulated by actin-binding proteins. However, the role of actin cytoskeleton in shoot negative gravitropism remains controversial. In this work, we report that the actin-binding protein Rice Morphology Determinant (RMD) promotes reorganization of the actin cytoskeleton in rice (Oryza sativa) shoots. The changes in actin organization are associated with the ability of the rice shoots to respond to negative gravitropism. Here, light-grown rmd mutant shoots exhibited agravitropic phenotypes. By contrast, etiolated rmd shoots displayed normal negative shoot gravitropism. Furthermore, we show that RMD maintains an actin configuration that promotes statolith mobility in gravisensing endodermal cells, and for proper auxin distribution in light-grown, but not dark-grown, shoots. RMD gene expression is diurnally controlled and directly repressed by the phytochrome-interacting factor-like protein OsPIL16. Consequently, overexpression of OsPIL16 led to gravisensing and actin patterning defects that phenocopied the rmd mutant. Our findings outline a mechanism that links light signaling and gravity perception for straight shoot growth in rice. Y1 - 2019 U6 - https://doi.org/10.1104/pp.19.00497 SN - 0032-0889 SN - 1532-2548 VL - 181 IS - 2 SP - 630 EP - 644 PB - American Society of Plant Physiologists CY - Rockville ER - TY - JOUR A1 - Sowemimo, Oluwakemi T. A1 - Knox-Brown, Patrick A1 - Borcherds, Wade A1 - Rindfleisch, Tobias A1 - Thalhammer, Anja A1 - Daughdrill, Gary W. T1 - Conserved Glycines Control Disorder and Function in the Cold-Regulated Protein, COR15A JF - Biomolecules N2 - Cold-regulated (COR) 15A is an intrinsically disordered protein (IDP) from Arabidopsis thaliana important for freezing tolerance. During freezing-induced cellular dehydration, COR15A transitions from a disordered to mostly alpha-helical structure. We tested whether mutations that increase the helicity of COR15A also increase its protective function. Conserved glycine residues were identified and mutated to alanine. Nuclear magnetic resonance (NMR) spectroscopy was used to identify residue-specific changes in helicity for wildtype (WT) COR15A and the mutants. Circular dichroism (CD) spectroscopy was used to monitor the coil-helix transition in response to increasing concentrations of trifluoroethanol (TFE) and ethylene glycol. The impact of the COR15A mutants on the stability of model membranes during a freeze-thaw cycle was investigated by fluorescence spectroscopy. The results of these experiments showed the mutants had a higher content of alpha-helical structure and the increased alpha-helicity improved membrane stabilization during freezing. Comparison of the TFE- and ethylene glycol-induced coil-helix transitions support our conclusion that increasing the transient helicity of COR15A in aqueous solution increases its ability to stabilize membranes during freezing. Altogether, our results suggest the conserved glycine residues are important for maintaining the disordered structure of COR15A but are also compatible with the formation of alpha-helical structure during freezing induced dehydration. KW - COR15A KW - Late embryogenesis abundant KW - intrinsically disordered proteins KW - Trifluoroethanol KW - Nuclear magnetic resonance Y1 - 2019 U6 - https://doi.org/10.3390/biom9030084 SN - 2218-273X VL - 9 IS - 3 PB - MDPI CY - Basel ER - TY - JOUR A1 - Sperber, Hannah Sabeth A1 - Welke, Robert-William A1 - Petazzi, Roberto Arturo A1 - Bergmann, Ronny A1 - Schade, Matthias A1 - Shai, Yechiel A1 - Chiantia, Salvatore A1 - Herrmann, Andreas A1 - Schwarzer, Roland T1 - Self-association and subcellular localization of Puumala hantavirus envelope proteins JF - Scientific reports N2 - Hantavirus assembly and budding are governed by the surface glycoproteins Gn and Gc. In this study, we investigated the glycoproteins of Puumala, the most abundant Hantavirus species in Europe, using fluorescently labeled wild-type constructs and cytoplasmic tail (CT) mutants. We analyzed their intracellular distribution, co-localization and oligomerization, applying comprehensive live, single-cell fluorescence techniques, including confocal microscopy, imaging flow cytometry, anisotropy imaging and Number&Brightness analysis. We demonstrate that Gc is significantly enriched in the Golgi apparatus in absence of other viral components, while Gn is mainly restricted to the endoplasmic reticulum (ER). Importantly, upon co-expression both glycoproteins were found in the Golgi apparatus. Furthermore, we show that an intact CT of Gc is necessary for efficient Golgi localization, while the CT of Gn influences protein stability. Finally, we found that Gn assembles into higher-order homo-oligomers, mainly dimers and tetramers, in the ER while Gc was present as mixture of monomers and dimers within the Golgi apparatus. Our findings suggest that PUUV Gc is the driving factor of the targeting of Gc and Gn to the Golgi region, while Gn possesses a significantly stronger self-association potential. Y1 - 2019 U6 - https://doi.org/10.1038/s41598-018-36879-y SN - 2045-2322 VL - 9 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Sroka, Pavel A1 - Godunko, Roman J. A1 - Rutschmann, Sereina A1 - Angeli, Kamila B. A1 - Salles, Frederico F. A1 - Gattolliat, Jean-Luc T1 - A new species of Bungona in Turkey (Ephemeroptera, Baetidae) BT - an unexpected biogeographic pattern within a pantropical complex of mayflies JF - Zoosytematics and evolution N2 - By using an integrative approach, we describe a new species of mayfly, Bungona (Chopralla) pontica sp. n., from Turkey. The discovery of a representative of the tropical mayfly genus Bungona in the Middle East is rather unexpected. The new species shows all the main morphological characters of the subgenus Chopralla, which has its closest related species occurring in southeastern Asia. Barcoding clearly indicated that the new species represents an independent lineage isolated for a very long time from other members of the complex. The claw is equipped with two rows of three or four flattened denticles. This condition is a unique feature of Bungona (Chopralla) pontica sp. n. among West Palaearctic mayfly species. Within the subgenus Chopralla, the species can be identified by the presence of a simple, not bifid right prostheca (also present only in Bungona (Chopralla) liebenauae (Soldan, Braasch & Muu, 1987)), the shape of the labial palp, and the absence of protuberances on pronotum. KW - Biogeography KW - Cloeodes complex KW - Chopralla KW - integrative taxonomy KW - Middle East KW - new species Y1 - 2019 U6 - https://doi.org/10.3897/zse.95.29487 SN - 1860-0743 VL - 95 IS - 1 SP - 1 EP - 13 PB - Pensoft Publ. CY - Sofia ER - TY - JOUR A1 - Staszek, Pawel A1 - Krasuska, Urszula A1 - Otulak-Koziel, Katarzyna A1 - Fettke, Jörg A1 - Gniazdowska, Agnieszka T1 - Canavanine-Induced Decrease in Nitric Oxide Synthesis Alters Activity of Antioxidant System but Does Not Impact S-Nitrosoglutathione Catabolism in Tomato Roots JF - Frontiers in plant science N2 - Canavanine (CAN) is a nonproteinogenic amino acid synthesized in legumes. In mammalians, as arginine analogue, it is an inhibitor of nitric oxide synthase (NOS) activity. The aim of this study was to investigate the impact of CAN-induced nitric oxide level limitation on the antioxidant system and S-nitrosoglutathione (GSNO) metabolism in roots of tomato seedlings. Treatment with CAN (10 or 50 mu M) for 24-72 h led to restriction in root growth. Arginine-dependent NOS-like activity was almost completely inhibited, demonstrating direct effect of CAN action. CAN increased total antioxidant capacity and the level of sulphydryl groups. Catalase (CAT) and superoxide dismutase (SOD) activity decreased in CAN exposed roots. CAN supplementation resulted in the decrease of transcript levels of genes coding CAT (with the exception of CAT1). Genes coding SOD (except MnSOD and CuSOD) were upregulated by CAN short treatment; prolonged exposition to 50-mu M CAN resulted in downregulation of FeSOD, CuSOD, and SODP-2. Activity of glutathione reductase dropped down after short-term (10-mu M CAN) supplementation, while glutathione peroxidase activity was not affected. Transcript levels of glutathione reductase genes declined in response to CAN. Genes coding glutathione peroxidase were upregulated by 50-mu M CAN, while 10-mu M CAN downregulated GSHPx1. Inhibition of NOS-like activity by CAN resulted in lower GSNO accumulation in root tips. Activity of GSNO reductase was decreased by short-term supplementation with CAN. In contrast, GSNO reductase protein abundance was higher, while transcript levels were slightly altered in roots exposed to CAN. This is the first report on identification of differentially nitrated proteins in response to supplementation with nonproteinogenic amino acid. Among nitrated proteins differentially modified by CAN, seed storage proteins (after short-term CAN treatment) and components of the cellular redox system (after prolonged CAN supplementation) were identified. The findings demonstrate that due to inhibition of NOS-like activity, CAN leads to modification in antioxidant system. Limitation in GSNO level is due to lower nitric oxide formation, while GSNO catabolism is less affected. We demonstrated that monodehydroascorbate reductase, activity of which is inhibited in roots of CAN-treated plants, is the protein preferentially modified by tyrosine nitration. KW - canavanine KW - cellular antioxidant system KW - GSNOR-GSNO reductase KW - nitrated proteins KW - nitric oxide-NO KW - nonproteinogenic amino acid KW - NOS-like activity KW - reactive nitrogen species (RNS) Y1 - 2019 U6 - https://doi.org/10.3389/fpls.2019.01077 SN - 1664-462X VL - 10 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Steger, Kristin A1 - Kim, Amy Taeyen A1 - Ganzert, Lars A1 - Grossart, Hans-Peter A1 - Smart, David R. T1 - Floodplain soil and its bacterial composition are strongly affected by depth JF - FEMS microbiology ecology N2 - We studied bacterial abundance and community structure of five soil cores using high-throughput sequencing of the 16S rRNA gene. Shifts in the soil bacterial composition were more pronounced within a vertical profile than across the landscape. Soil organic carbon (SOC) and nitrogen (N) concentrations decreased exponentially with soil depth and revealed a buried carbon-rich horizon between 0.8 and 1.3 m across all soil cores. This buried horizon was phylogenetically similar to its surrounding subsoils supporting the idea that the type of carbon, not necessarily the amount of carbon was driving the apparent similarities. In contrast to other studies, Nitrospirae was one of our major phyla with relatively high abundances throughout the soil profile except for the surface soil. Although depth is the major driver shaping soil bacterial community structure, positive correlations with SOC and N concentrations, however, were revealed with the bacterial abundance of Acidobacteria, one of the major, and Gemmatimonadetes, one of the minor phyla in our study. Our study showed that bacterial diversity in soils below 2.0 m can be still as high if not higher than in the above laying subsurface soil suggesting that various bacteria throughout the soil profile influence major biogeochemical processes in floodplain soils. KW - 16S rRNA gene sequencing KW - alluvial soil KW - buried horizon KW - Nitrospirae KW - soil bacterial diversity KW - SOC Y1 - 2019 U6 - https://doi.org/10.1093/femsec/fiz014 SN - 0168-6496 SN - 1574-6941 VL - 95 IS - 3 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Tabares Jimenez, Ximena del Carmen A1 - Zimmermann, Heike Hildegard A1 - Dietze, Elisabeth A1 - Ratzmann, Gregor A1 - Belz, Lukas A1 - Vieth-Hillebrand, Andrea A1 - Dupont, Lydie A1 - Wilkes, Heinz A1 - Mapani, Benjamin A1 - Herzschuh, Ulrike T1 - Vegetation state changes in the course of shrub encroachment in an African savanna since about 1850 CE and their potential drivers JF - Ecology and evolution N2 - Shrub encroachment has far-reaching ecological and economic consequences in many ecosystems worldwide. Yet, compositional changes associated with shrub encroachment are often overlooked despite having important effects on ecosystem functioning. We document the compositional change and potential drivers for a northern Namibian Combretum woodland transitioning into a Terminalia shrubland. We use a multiproxy record (pollen, sedimentary ancient DNA, biomarkers, compound-specific carbon (delta C-13) and deuterium (delta D) isotopes, bulk carbon isotopes (delta(13)Corg), grain size, geochemical properties) from Lake Otjikoto at high taxonomical and temporal resolution. We provide evidence that state changes in semiarid environments may occur on a scale of one century and that transitions between stable states can span around 80 years and are characterized by a unique vegetation composition. We demonstrate that the current grass/woody ratio is exceptional for the last 170 years, as supported by n-alkane distributions and the delta C-13 and delta(13)Corg records. Comparing vegetation records to environmental proxy data and census data, we infer a complex network of global and local drivers of vegetation change. While our delta D record suggests physiological adaptations of woody species to higher atmospheric pCO(2) concentration and drought, our vegetation records reflect the impact of broad-scale logging for the mining industry, and the macrocharcoal record suggests a decrease in fire activity associated with the intensification of farming. Impact of selective grazing is reflected by changes in abundance and taxonomical composition of grasses and by an increase of nonpalatable and trampling-resistant taxa. In addition, grain-size and spore records suggest changes in the erodibility of soils because of reduced grass cover. Synthesis. We conclude that transitions to an encroached savanna state are supported by gradual environmental changes induced by management strategies, which affected the resilience of savanna ecosystems. In addition, feedback mechanisms that reflect the interplay between management legacies and climate change maintain the encroached state. KW - climate change KW - fossil pollen KW - land-use change KW - savanna ecology KW - sedimentary ancient DNA KW - state and transition KW - tree-grass interactions Y1 - 2019 U6 - https://doi.org/10.1002/ece3.5955 SN - 2045-7758 VL - 10 IS - 2 SP - 962 EP - 979 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Tanabe, Tomohisa Sebastian A1 - Leimkühler, Silke A1 - Dahl, Christiane ED - Poole, RK T1 - The functional diversity of the prokaryotic sulfur carrier protein TusA JF - Advances in microbial physiology N2 - Persulfide groups participate in a wide array of biochemical pathways and are chemically very versatile. The TusA protein has been identified as a central element supplying and transferring sulfur as persulfide to a number of important biosynthetic pathways, like molybdenum cofactor biosynthesis or thiomodifications in nucleosides of tRNAs. In recent years, it has furthermore become obvious that this protein is indispensable for the oxidation of sulfur compounds in the cytoplasm. Phylogenetic analyses revealed that different TusA protein variants exists in certain organisms, that have evolved to pursue specific roles in cellular pathways. The specific TusA-like proteins thereby cannot replace each other in their specific roles and are rather specific to one sulfur transfer pathway or shared between two pathways. While certain bacteria like Escherichia coli contain several copies of TusA-like proteins, in other bacteria like Allochromatium vinosum a single copy of TusA is present with an essential role for this organism. Here, we give an overview on the multiple roles of the various TusA-like proteins in sulfur transfer pathways in different organisms to shed light on the remaining mysteries of this versatile protein. Y1 - 2019 SN - 978-0-12-817715-0 SN - 978-0-12-817714-3 U6 - https://doi.org/10.1016/bs.ampbs.2019.07.004 SN - 0065-2911 VL - 75 SP - 233 EP - 277 PB - Elsevier Acad. Press CY - Amsterdam ER - TY - JOUR A1 - Tang, Alan T. A1 - Sullivan, Katie Rose A1 - Hong, Courtney C. A1 - Goddard, Lauren M. A1 - Mahadevan, Aparna A1 - Ren, Aileen A1 - Pardo, Heidy A1 - Peiper, Amy A1 - Griffin, Erin A1 - Tanes, Ceylan A1 - Mattei, Lisa M. A1 - Yang, Jisheng A1 - Li, Li A1 - Mericko-Ishizuka, Patricia A1 - Shen, Le A1 - Hobson, Nicholas A1 - Girard, Romuald A1 - Lightle, Rhonda A1 - Moore, Thomas A1 - Shenkar, Robert A1 - Polster, Sean P. A1 - Roedel, Claudia Jasmin A1 - Li, Ning A1 - Zhu, Qin A1 - Whitehead, Kevin J. A1 - Zheng, Xiangjian A1 - Akers, Amy A1 - Morrison, Leslie A1 - Kim, Helen A1 - Bittinger, Kyle A1 - Lengner, Christopher J. A1 - Schwaninger, Markus A1 - Velcich, Anna A1 - Augenlicht, Leonard A1 - Abdelilah-Seyfried, Salim A1 - Min, Wang A1 - Marchuk, Douglas A. A1 - Awad, Issam A. A1 - Kahn, Mark L. T1 - Distinct cellular roles for PDCD10 define a gut-brain axis in cerebral cavernous malformation JF - Science Translational Medicine N2 - Cerebral cavernous malformation (CCM) is a genetic, cerebrovascular disease. Familial CCM is caused by genetic mutations in KRIT1, CCM2, or PDCD10. Disease onset is earlier and more severe in individuals with PDCD10 mutations. Recent studies have shown that lesions arise from excess mitogen-activated protein kinase kinase kinase 3 (MEKK3) signaling downstream of Toll-like receptor 4 (TLR4) stimulation by lipopolysaccharide derived from the gut microbiome. These findings suggest a gut-brain CCM disease axis but fail to define it or explain the poor prognosis of patients with PDCD10 mutations. Here, we demonstrate that the gut barrier is a primary determinant of CCM disease course, independent of microbiome configuration, that explains the increased severity of CCM disease associated with PDCD10 deficiency. Chemical disruption of the gut barrier with dextran sulfate sodium augments CCM formation in a mouse model, as does genetic loss of Pdcd10, but not Krit1, in gut epithelial cells. Loss of gut epithelial Pdcd10 results in disruption of the colonic mucosal barrier. Accordingly, loss of Mucin-2 or exposure to dietary emulsifiers that reduce the mucus barrier increases CCM burden analogous to loss of Pdcd10 in the gut epithelium. Last, we show that treatment with dexamethasone potently inhibits CCM formation in mice because of the combined effect of action at both brain endothelial cells and gut epithelial cells. These studies define a gut-brain disease axis in an experimental model of CCM in which a single gene is required for two critical components: gut epithelial function and brain endothelial signaling. Y1 - 2019 U6 - https://doi.org/10.1126/scitranslmed.aaw3521 SN - 1946-6234 SN - 1946-6242 VL - 11 IS - 520 PB - American Assoc. for the Advancement of Science CY - Washington ER - TY - JOUR A1 - Tang, Jing A1 - Werchmeister, Rebecka Maria Larsen A1 - Preda, Loredana A1 - Huang, Wei A1 - Zheng, Zhiyong A1 - Leimkühler, Silke A1 - Wollenberger, Ulla A1 - Xiao, Xinxin A1 - Engelbrekt, Christian A1 - Ulstrup, Jens A1 - Zhang, Jingdong T1 - Three-dimensional sulfite oxidase bioanodes based on graphene functionalized carbon paper for sulfite/O-2 biofuel cells JF - ACS catalysis N2 - We have developed a three-dimensional (3D) graphene electrode suitable for the immobilization of human sulfite oxidase (hSO), which catalyzes the electrochemical oxidation of sulfite via direct electron transfer (DET). The electrode is fabricated by drop-casting graphene-polyethylenimine (G-P) composites on carbon papers (CPs) precoated with graphene oxide (GO). The negatively charged hSO can be adsorbed electrostatically on the positively charged matrix (G-P) on CP electrodes coated with GO (CPG), with a proper orientation for accelerated DET. Notably, further electrochemical reduction of G-P on CPG electrodes leads to a 9-fold increase of the saturation catalytic current density (j(m)) for sulfite oxidation reaching 24.4 +/- 0.3 mu A to cm(-2), the highest value among reported DET-based hSO bioelectrodes. The increased electron transfer rate plays a dominating role in the enhancement of direct enzymatic current because of the improved electric contact of hSO with the electrode, The optimized hSO bioelectrode shows a significant catalytic rate (k(cat): 25.6 +/- 0.3 s(-1)) and efficiency (k(cat)/K-m: 0.231 +/- 0.003 s(-1) mu M-1) compared to the reported hSO bioelectrodes. The assembly of the hSO bioanode and a commercial platinum biocathode allows the construction of sulfite/O-2 enzymatic biofuel cells (EBFCs) with flowing fuels. The optimized EBFC displays an open-circuit voltage (OCV) of 0.64 +/- 0.01 V and a maximum power density of 61 +/- 6 mu W cm(-2) (122 +/- 12 mW m(-3)) at 30 degrees C, which exceeds the best reported value by more than 6 times. KW - enzymatic biofuel cell KW - reduced graphene oxide KW - sulfite oxidase KW - carbon paper KW - direct electron transfer Y1 - 2019 U6 - https://doi.org/10.1021/acscatal.9b01715 SN - 2155-5435 VL - 9 IS - 7 SP - 6543 EP - 6554 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Tang, Kam W. A1 - Backhaus, Liv A1 - Riemann, Lasse A1 - Koski, Marja A1 - Grossart, Hans-Peter A1 - Munk, Peter A1 - Nielsen, Torkel Gissel T1 - Copepod carcasses in the subtropical convergence zone of the Sargasso Sea BT - implications for microbial community composition, system respiration and carbon flux JF - Journal of plankton research N2 - The oligotrophic subtropical gyre covers a vast area of the Atlantic Ocean. Decades of time-series monitoring have generated detailed temporal information about zooplankton species and abundances at fixed locations within the gyre, but their live/dead status is often omitted, especially in the dynamic subtropical convergence zone (STCZ) where the water column stratification pattern can change considerably across the front as warm and cold water masses converge. We conducted a detailed survey in the North Atlantic STCZ and showed that over 85% of the copepods were typically concentrated in the upper 200 m. Copepod carcasses were present in all samples and their proportional numerical abundances increased with depth, reaching up to 91% at 300-400 m. Overall, 14-19% of the copepods within the upper 200 m were carcasses. Shipboard experiments showed that during carcass decomposition, microbial respiration increased, and the bacterial community associated with the carcasses diverged from that in the ambient water. Combining field and experimental data, we estimated that decomposing copepod carcasses constitute a negligible oxygen sink in the STCZ, but sinking carcasses may represent an overlooked portion of the passive carbon sinking flux and should be incorporated in future studies of carbon flux in this area. KW - Sargasso Sea KW - subtropical convergence zone KW - zooplankton KW - carcasses KW - carbon sinking flux Y1 - 2019 U6 - https://doi.org/10.1093/plankt/fbz038 SN - 0142-7873 SN - 1464-3774 VL - 41 IS - 4 SP - 549 EP - 560 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Tanner, Norman A1 - Lichtenberg-Kraag, Birgit T1 - Identification and Quantification of Single and Multi-Adulteration of Beeswax by FTIR-ATR Spectroscopy JF - European journal of lipid science and technology N2 - Marketing of adulterated beeswax foundation has recently become a major economic problem for beekeepers. Paraffin contamination leads to collapse of combs, and stearic acid has a negative influence on the development of bee brood. The quality of beeswax for beekeeping has not been standardized in EU regulations. Recently, it was shown that attenuated total reflectance Fourier-transform infrared spectroscopy (FTIR-ATR) can be used to determine beeswax adulteration. Differences in the IR spectra of authentic beeswax can be identified and calculated through comparison with authentic beeswax. In this study, the method is further validated by employing a high number of samples of authentic beeswax from different origins. Low quantification and detection limits are achieved for paraffin, stearic acid, tallow, carnauba wax, and candelilla wax. Furthermore, the FTIR-ATR analytical conditions are verified by analyzing 358 samples of commercial and beekeeper-produced beeswax foundations. Multi-adulterated samples with as many as five different additives in beeswax mixtures are identified with the same accuracy as single substances. Additionally, the spectra of a further 14 different natural and synthetic waxes and hardened fats are analyzed and are compared with beeswax. Finally, a spectral library is established that can be used for further studies. Practical Applications: FTIR-ATR is a fast and cost-efficient tool in beeswax analysis for accurately monitoring a high sample volume. Analysis of 358 beeswax foundations showed an adulteration of 21.8% of the samples with paraffin, stearic acid, tallow, and combinations. Based on the results of this study, it is possible to detect beeswax adulteration of less than 3% of these adulterants and their combinations by FTIR-ATR spectroscopy. This method can be used for monitoring beeswax foundations to identify adulterated materials, exclude these materials from the recycling process, and produce high-quality beeswax, which is essential for bee health. KW - beeswax KW - beeswax substitutes KW - candelilla wax KW - carnauba wax KW - FTIR-ATR KW - multi-adulteration KW - paraffin KW - stearic acid KW - tallow Y1 - 2019 U6 - https://doi.org/10.1002/ejlt.201900245 SN - 1438-7697 SN - 1438-9312 VL - 121 IS - 12 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Tarazona, Natalia A. A1 - Machatschek, Rainhard Gabriel A1 - Lendlein, Andreas T1 - Unraveling the interplay between abiotic hydrolytic degradation and crystallization of bacterial polyesters comprising short and medium side-chain-length Polyhydroxyalkanoates JF - Biomacromolecules : an interdisciplinary journal focused at the interface of polymer science and the biological sciences N2 - Polyhydroxyalkanoates (PHAs) have attracted attention as degradable (co)polyesters which can be produced by microorganisms with variations in the side chain. This structural variation influences not only the thermomechanical properties of the material but also its degradation behavior. Here, we used Langmuir monolayers at the air-water (A-W) interface as suitable models for evaluating the abiotic degradation of two PHAs with different side-chain lengths and crystallinity. By controlling the polymer state (semi crystalline, amorphous), the packing density, the pH, and the degradation mechanism, we could draw several significant conclusions. (i) The maximum degree of crystallinity for a PHA film to be efficiently degraded up to pH = 12.3 is 40%. (ii) PHA made of repeating units with shorter side-chain length are more easily hydrolyzed under alkaline conditions. The efficiency of alkaline hydrolysis decreased by about 65% when the polymer was 40% crystalline. (iii) In PHA films with a relatively high initial crystallinity, abiotic degradation initiated a chemicrystallization phenomenon, detected as an increase in the storage modulus (E'). This could translate into an increase in brittleness and reduction in the material degradability. Finally, we demonstrate the stability of the measurement system for long-term experiments, which allows degradation conditions for polymers that could closely simulate real-time degradation. Y1 - 2019 U6 - https://doi.org/10.1021/acs.biomac.9b01458 SN - 1525-7797 SN - 1526-4602 VL - 21 IS - 2 SP - 761 EP - 771 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Tarazona, Natalia A. A1 - Machatschek, Rainhard Gabriel A1 - Schulz, Burkhard A1 - Auxiliadora Prieto Jiménez, M. A1 - Lendlein, Andreas T1 - Molecular Insights into the Physical Adsorption of Amphiphilic Protein PhaF onto Copolyester Surfaces JF - Biomacromolecules : an interdisciplinary journal focused at the interface of polymer science and the biological sciences N2 - Phasins are amphiphilic proteins located at the polymer-cytoplasm interface of bacterial polyhydroxyalkanoates (PHA). The immobilization of phasins on biomaterial surfaces is a promising way to enhance the hydrophilicity and supply cell- directing elements in bioinstructing processes. Optimizing the physical adsorption of phasins requires deep insights into molecular processes during polymer-protein interactions to preserve their structural conformation while optimizing surface coverage. Here, the assembly, organization, and stability of phasin PhaF from Pseudomonas putida at interfaces is disclosed. The Langmuir technique, combined with in situ microscopy and spectroscopic methods, revealed that PhaF forms stable and robust monolayers at different temperatures, with an almost flat orientation of its alpha-helix at the air-water interface. PhaF adsorption onto preformed monolayers of poly[(3-R-hydroxyoctanoate)-co-(3-R-hydroxyhexanoate)] (PHOHHx), yields stable mixed layers below pi = similar to 15.7 mN/m. Further insertion induces a molecular reorganization. PHOHHx with strong surface hydrophobicity is a more adequate substrate for PhaF adsorption than the less hydrophobic poly[(rac-lactide)-co-glycolide] (PLGA). The observed orientation of the main axis of the protein in relation to copolyester interfaces ensures the best exposure of the hydrophobic residues, providing a suitable coating strategy for polymer functionalization. Y1 - 2019 U6 - https://doi.org/10.1021/acs.biomac.9b00069 SN - 1525-7797 SN - 1526-4602 VL - 20 IS - 9 SP - 3242 EP - 3252 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Teckentrup, Lisa A1 - Kramer-Schadt, Stephanie A1 - Jeltsch, Florian T1 - The risk of ignoring fear: underestimating the effects of habitat loss and fragmentation on biodiversity JF - Landscape ecology KW - Predator-prey interactions KW - Fragmentation KW - Habitat loss KW - Landscape of fear KW - Biodiversity KW - Community Y1 - 2019 U6 - https://doi.org/10.1007/s10980-019-00922-8 SN - 0921-2973 SN - 1572-9761 VL - 34 IS - 12 SP - 2851 EP - 2868 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Thomas, Jessica E. A1 - Carvalho, Gary R. A1 - Haile, James A1 - Rawlence, Nicolas J. A1 - Martin, Michael D. A1 - Ho, Simon Y. W. A1 - Sigfusson, Arnor P. A1 - Josefsson, Vigfus A. A1 - Frederiksen, Morten A1 - Linnebjerg, Jannie F. A1 - Castruita, Jose A. Samaniego A1 - Niemann, Jonas A1 - Sinding, Mikkel-Holger S. A1 - Sandoval-Velasco, Marcela A1 - Soares, Andre E. R. A1 - Lacy, Robert A1 - Barilaro, Christina A1 - Best, Juila A1 - Brandis, Dirk A1 - Cavallo, Chiara A1 - Elorza, Mikelo A1 - Garrett, Kimball L. A1 - Groot, Maaike A1 - Johansson, Friederike A1 - Lifjeld, Jan T. A1 - Nilson, Goran A1 - Serjeanston, Dale A1 - Sweet, Paul A1 - Fuller, Errol A1 - Hufthammer, Anne Karin A1 - Meldgaard, Morten A1 - Fjeldsa, Jon A1 - Shapiro, Beth A1 - Hofreiter, Michael A1 - Stewart, John R. A1 - Gilbert, M. Thomas P. A1 - Knapp, Michael T1 - Demographic reconstruction from ancient DNA supports rapid extinction of the great auk JF - eLife N2 - The great auk was once abundant and distributed across the North Atlantic. It is now extinct, having been heavily exploited for its eggs, meat, and feathers. We investigated the impact of human hunting on its demise by integrating genetic data, GPS-based ocean current data, and analyses of population viability. We sequenced complete mitochondrial genomes of 41 individuals from across the species' geographic range and reconstructed population structure and population dynamics throughout the Holocene. Taken together, our data do not provide any evidence that great auks were at risk of extinction prior to the onset of intensive human hunting in the early 16th century. In addition, our population viability analyses reveal that even if the great auk had not been under threat by environmental change, human hunting alone could have been sufficient to cause its extinction. Our results emphasise the vulnerability of even abundant and widespread species to intense and localised exploitation. Y1 - 2019 U6 - https://doi.org/10.7554/eLife.47509 SN - 2050-084X VL - 8 PB - eLife Sciences Publications CY - Cambridge ER - TY - JOUR A1 - Tiegs, Scott D. A1 - Costello, David M. A1 - Isken, Mark W. A1 - Woodward, Guy A1 - McIntyre, Peter B. A1 - Gessner, Mark O. A1 - Chauvet, Eric A1 - Griffiths, Natalie A. A1 - Flecker, Alex S. A1 - Acuna, Vicenc A1 - Albarino, Ricardo A1 - Allen, Daniel C. A1 - Alonso, Cecilia A1 - Andino, Patricio A1 - Arango, Clay A1 - Aroviita, Jukka A1 - Barbosa, Marcus V. M. A1 - Barmuta, Leon A. A1 - Baxter, Colden V. A1 - Bell, Thomas D. C. A1 - Bellinger, Brent A1 - Boyero, Luz A1 - Brown, Lee E. A1 - Bruder, Andreas A1 - Bruesewitz, Denise A. A1 - Burdon, Francis J. A1 - Callisto, Marcos A1 - Canhoto, Cristina A1 - Capps, Krista A. A1 - Castillo, Maria M. A1 - Clapcott, Joanne A1 - Colas, Fanny A1 - Colon-Gaud, Checo A1 - Cornut, Julien A1 - Crespo-Perez, Veronica A1 - Cross, Wyatt F. A1 - Culp, Joseph M. A1 - Danger, Michael A1 - Dangles, Olivier A1 - de Eyto, Elvira A1 - Derry, Alison M. A1 - Diaz Villanueva, Veronica A1 - Douglas, Michael M. A1 - Elosegi, Arturo A1 - Encalada, Andrea C. A1 - Entrekin, Sally A1 - Espinosa, Rodrigo A1 - Ethaiya, Diana A1 - Ferreira, Veronica A1 - Ferriol, Carmen A1 - Flanagan, Kyla M. A1 - Fleituch, Tadeusz A1 - Shah, Jennifer J. Follstad A1 - Frainer, Andre A1 - Friberg, Nikolai A1 - Frost, Paul C. A1 - Garcia, Erica A. A1 - Lago, Liliana Garcia A1 - Garcia Soto, Pavel Ernesto A1 - Ghate, Sudeep A1 - Giling, Darren P. A1 - Gilmer, Alan A1 - Goncalves, Jose Francisco A1 - Gonzales, Rosario Karina A1 - Graca, Manuel A. S. A1 - Grace, Mike A1 - Grossart, Hans-Peter A1 - Guerold, Francois A1 - Gulis, Vlad A1 - Hepp, Luiz U. A1 - Higgins, Scott A1 - Hishi, Takuo A1 - Huddart, Joseph A1 - Hudson, John A1 - Imberger, Samantha A1 - Iniguez-Armijos, Carlos A1 - Iwata, Tomoya A1 - Janetski, David J. A1 - Jennings, Eleanor A1 - Kirkwood, Andrea E. A1 - Koning, Aaron A. A1 - Kosten, Sarian A1 - Kuehn, Kevin A. A1 - Laudon, Hjalmar A1 - Leavitt, Peter R. A1 - Lemes da Silva, Aurea L. A1 - Leroux, Shawn J. A1 - Leroy, Carri J. A1 - Lisi, Peter J. A1 - MacKenzie, Richard A1 - Marcarelli, Amy M. A1 - Masese, Frank O. A1 - Mckie, Brendan G. A1 - Oliveira Medeiros, Adriana A1 - Meissner, Kristian A1 - Milisa, Marko A1 - Mishra, Shailendra A1 - Miyake, Yo A1 - Moerke, Ashley A1 - Mombrikotb, Shorok A1 - Mooney, Rob A1 - Moulton, Tim A1 - Muotka, Timo A1 - Negishi, Junjiro N. A1 - Neres-Lima, Vinicius A1 - Nieminen, Mika L. A1 - Nimptsch, Jorge A1 - Ondruch, Jakub A1 - Paavola, Riku A1 - Pardo, Isabel A1 - Patrick, Christopher J. A1 - Peeters, Edwin T. H. M. A1 - Pozo, Jesus A1 - Pringle, Catherine A1 - Prussian, Aaron A1 - Quenta, Estefania A1 - Quesada, Antonio A1 - Reid, Brian A1 - Richardson, John S. A1 - Rigosi, Anna A1 - Rincon, Jose A1 - Risnoveanu, Geta A1 - Robinson, Christopher T. A1 - Rodriguez-Gallego, Lorena A1 - Royer, Todd V. A1 - Rusak, James A. A1 - Santamans, Anna C. A1 - Selmeczy, Geza B. A1 - Simiyu, Gelas A1 - Skuja, Agnija A1 - Smykla, Jerzy A1 - Sridhar, Kandikere R. A1 - Sponseller, Ryan A1 - Stoler, Aaron A1 - Swan, Christopher M. A1 - Szlag, David A1 - Teixeira-de Mello, Franco A1 - Tonkin, Jonathan D. A1 - Uusheimo, Sari A1 - Veach, Allison M. A1 - Vilbaste, Sirje A1 - Vought, Lena B. M. A1 - Wang, Chiao-Ping A1 - Webster, Jackson R. A1 - Wilson, Paul B. A1 - Woelfl, Stefan A1 - Xenopoulos, Marguerite A. A1 - Yates, Adam G. A1 - Yoshimura, Chihiro A1 - Yule, Catherine M. A1 - Zhang, Yixin X. A1 - Zwart, Jacob A. T1 - Global patterns and drivers of ecosystem functioning in rivers and riparian zones JF - Science Advances N2 - River ecosystems receive and process vast quantities of terrestrial organic carbon, the fate of which depends strongly on microbial activity. Variation in and controls of processing rates, however, are poorly characterized at the global scale. In response, we used a peer-sourced research network and a highly standardized carbon processing assay to conduct a global-scale field experiment in greater than 1000 river and riparian sites. We found that Earth’s biomes have distinct carbon processing signatures. Slow processing is evident across latitudes, whereas rapid rates are restricted to lower latitudes. Both the mean rate and variability decline with latitude, suggesting temperature constraints toward the poles and greater roles for other environmental drivers (e.g., nutrient loading) toward the equator. These results and data set the stage for unprecedented “next-generation biomonitoring” by establishing baselines to help quantify environmental impacts to the functioning of ecosystems at a global scale. Y1 - 2019 U6 - https://doi.org/10.1126/sciadv.aav0486 SN - 2375-2548 VL - 5 IS - 1 PB - American Assoc. for the Advancement of Science CY - Washington ER - TY - JOUR A1 - Toulouse, Charlotte Marguerite A1 - Schmucker, Sonja A1 - Metesch, Kristina A1 - Pfannstiel, Jens A1 - Michel, Bernd A1 - Starke, Ines A1 - Möller, Heiko Michael A1 - Stefanski, Volker A1 - Steuber, Julia T1 - Mechanism and impact of catecholamine conversion by Vibrio cholerae JF - Biochimica et biophysica acta : Bioenergetics N2 - Bacterial pathogens are influenced by signaling molecules including the catecholamines adrenaline and noradrenaline which are host-derived hormones and neurotransmitters. Adrenaline and noradrenaline modulate growth, motility and virulence of bacteria. We show that adrenaline is converted by the pathogen Vibrio cholerae to adrenochrome in the course of respiration, and demonstrate that superoxide produced by the respiratory, Na+ - translocating NADH:quinone oxidoreductase (NQR) acts as electron acceptor in the oxidative conversion of adrenaline to adrenochrome. Adrenochrome stimulates growth of V. cholerae, and triggers specific responses in V. cholerae and in immune cells. We performed a quantitative proteome analysis of V. cholerae grown in minimal medium with glucose as carbon source without catecholamines, or with adrenaline, noradrenaline or adrenochrome. Significant regulation of proteins participating in iron transport and iron homeostasis, in energy metabolism, and in signaling was observed upon exposure to adrenaline, noradrenaline or adrenochrome. On the host side, adrenochrome inhibited lipopolysaccharide-triggered formation of TNF-alpha by THP-1 monocytes, though to a lesser extent than adrenaline. It is proposed that adrenochrome produced from adrenaline by respiring V. cholerae functions as effector molecule in pathogen-host interaction. KW - Vibrio cholerae KW - Na+ - NADH:quinone oxidoreductase KW - NQR KW - Superoxide KW - Adrenaline KW - Adrenochrome Y1 - 2019 U6 - https://doi.org/10.1016/j.bbabio.2019.04.003 SN - 0005-2728 SN - 1879-2650 VL - 1860 IS - 6 SP - 478 EP - 487 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Velo-Antón, Guillermo A1 - Boratyński, Zbyszek A1 - Ferreira, Clara Mendes A1 - Lima, Vanessa O. A1 - Alves, Paulo C. A1 - Brito, José C. T1 - Intraspecific genetic diversity and distribution of North African hedgehogs (Mammalia: Erinaceidae) JF - Biological journal of the Linnean Society : a journal of evolution N2 - Despite growing efforts to halt biodiversity loss, knowledge of species diversity and distribution is highly geographically biased, leaving some areas unexplored. Taxa distributed in remote, desert areas, such as hedgehogs (Mammalia; Eulipotyphla) in North Africa, are good examples of current knowledge gaps in systematics and biogeography. Here we studied the geographical distribution and intraspecific genetic diversity of hedgehogs in North Africa. Specimens belonging to North African and Eurasian species were analysed with mitochondrial (control region, CR) and nuclear (recombination activating gene 1, RAG1) gene fragments. This revealed a broader geographical distribution of Atelerix algirus in south-western Libya and of Paraechinus aethiopicus along the Atlantic Sahara. High intraspecific genetic differentiation was found in A. algirus and A. albiventris at the mitochondrial level, with nuclear haplotype sharing across their ranges. These findings suggest that biogeographical patterns of hedgehogs in North Africa are more complex than previously suggested, highlighting a need for further investigation in this remote and poorly known area. KW - Atelerix albiventris KW - Atelerix algirus KW - conservation genetics KW - cryptic diversity KW - distribution KW - Paraechinus aethiopicus KW - Phylogeny KW - Sahara-Sahel Y1 - 2019 U6 - https://doi.org/10.1093/biolinnean/blz030 SN - 0024-4066 SN - 1095-8312 VL - 127 IS - 1 SP - 156 EP - 163 PB - Oxford University Press CY - Oxford ER - TY - JOUR A1 - Von Raab-Straube, Eckhard A1 - Raus, Thomas A1 - Bazos, Ioannis A1 - Cornec, J. P. A1 - De Belair, Gerard. A1 - Dimitrakopoulos, P. G. A1 - El Mokni, Ridha A1 - Fateryga, Alexander V. A1 - Fateryga, Valentina V. A1 - Fridlender, Alain A1 - Gil, Jaime A1 - Grigorenko, V. N. A1 - Hand, Ralf A1 - Kovalchuk, A. A1 - Mastrogianni, A. A1 - Otto, R. A1 - Rätzel, Stefan A1 - Raus, Th. A1 - Ristow, Michael A1 - Salas Pascual, M. A1 - Strid, Arne A1 - Svirin, S. A. A1 - Tsiripidis, Ioannis. A1 - Uhlich, Holger A1 - Vela, Errol A1 - Verloove, Filip A1 - Vidakis, K. A1 - Yena, Andriy Vasylyovych A1 - Yevseyenkov, P. E. A1 - Zeddam, A. T1 - Euro plus Med-Checklist Notulae, 11 JF - Willdenowia N2 - This is the eleventh of a series of miscellaneous contributions, by various authors, where hitherto unpublished data relevant to both the Med-Checklist and the Euro+Med (or Sisyphus) projects are presented. This instalment deals with the families Anacardiaceae, Asparagaceae (incl. Hyacinthaceae), Bignoniaceae, Cactaceae, Compositae, Cruciferae, Cyperaceae, Ericaceae, Gramineae, Labiatae, Leguminosae, Orobanchaceae, Polygonaceae, Rosaceae, Solanaceae and Staphyleaceae. It includes new country and area records and taxonomic and distributional considerations for taxa in Bidens, Campsis, Centaurea, Cyperus, Drymocallis, Engem, Hoffmannseggia, Hypopitys, Lavandula, Lithraea, Melilotus, Nicotiana, Olimarabidopsis, Opuntia, Orobanche, Phelipanche, Phragmites, Rumex, Salvia, Schinus, Staphylea, and a new combination in Drimia. KW - distribution KW - Euro plus Med PlantBase KW - Europe KW - Med-Checklist KW - Mediterranean KW - new combination KW - new record KW - taxonomy KW - vascular plants Y1 - 2019 U6 - https://doi.org/10.3372/wi.49.49312 SN - 0511-9618 VL - 49 IS - 3 SP - 421 EP - 445 PB - Botanischer Garten & botanisches Museum Berlin-Dahlem CY - Berlin ER -