TY - JOUR A1 - Proctor, Christopher M. A1 - Kim, Chunki A1 - Neher, Dieter A1 - Thuc-Quyen Nguyen, T1 - Nongeminate recombination and charge transport limitations in diketopyrrolopyrrole-based solution-processed small molecule solar cells JF - Advanced functional materials N2 - Charge transport and nongeminate recombination are investigated in two solution-processed small molecule bulk heterojunction solar cells consisting of diketopyrrolopyrrole (DPP)-based donor molecules, mono-DPP and bis-DPP, blended with [6,6]-phenyl-C71-butyric acid methyl ester (PCBM). While the bis-DPP system exhibits a high fill factor (62%) the mono-DPP system suffers from pronounced voltage dependent losses, which limit both the fill factor (46%) and short circuit current. A method to determine the average charge carrier density, recombination current, and effective carrier lifetime in operating solar cells as a function of applied bias is demonstrated. These results and light intensity measurements of the current-voltage characteristics indicate that the mono-DPP system is severely limited by nongeminate recombination losses. Further analysis reveals that the most significant factor leading to the difference in fill factor is the comparatively poor hole transport properties in the mono-DPP system (2 x 10(-5) cm(2) V-1 s(-1) versus 34 x 10(-5) cm(2) V-1 s(-1)). These results suggest that future design of donor molecules for organic photovoltaics should aim to increase charge carrier mobility thereby enabling faster sweep out of charge carriers before they are lost to nongeminate recombination. KW - charge transport KW - solar cells KW - photovoltaic devices KW - organic electronics KW - characterization tools Y1 - 2013 U6 - https://doi.org/10.1002/adfm.201202643 SN - 1616-301X SN - 1616-3028 VL - 23 IS - 28 SP - 3584 EP - 3594 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Lange, Ilja A1 - Kniepert, Juliane A1 - Pingel, Patrick A1 - Dumsch, Ines A1 - Allard, Sybille A1 - Janietz, Silvia A1 - Scherf, Ullrich A1 - Neher, Dieter T1 - Correlation between the open circuit voltage and the energetics of organic bulk heterojunction solar cells JF - The journal of physical chemistry letters N2 - A detailed investigation of the open circuit voltage (V-OC) of organic bulk heterojunction solar cells comprising three different donor polymers and two different fullerene-based acceptors is presented. Bias amplified charge extraction (BACE) is combined with Kelvin Probe measurements to derive information on the relevant energetics in the blend. On the example of P3HT:PC70BM the influence of composition and preparation conditions on the relevant transport levels will be shown. Moderate upward shifts of the P3HT HOMO depending on crystallinity are observed, but contrarily to common believe, the dependence of V-OC on blend composition and thermal history is found to be largely determined by the change in the PCBM LUMO energy. Following this approach, we quantified the energetic contribution to the V-OC in blends with fluorinated polymers or higher adduct fullerenes. Y1 - 2013 U6 - https://doi.org/10.1021/jz401971e SN - 1948-7185 VL - 4 IS - 22 SP - 3865 EP - 3871 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Inal, Sahika A1 - Chiappisi, Leonardo A1 - Kölsch, Jonas D. A1 - Kraft, Mario A1 - Appavou, Marie-Sousai A1 - Scherf, Ullrich A1 - Wagner, Manfred A1 - Hansen, Michael Ryan A1 - Gradzielski, Michael A1 - Laschewsky, André A1 - Neher, Dieter T1 - Temperature-regulated fluorescence and association of an Oligo(ethyleneglycol)methacrylate-based copolymer with a conjugated Polyelectrolyte-the effect of solution ionic strength JF - The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces & biophysical chemistry N2 - Aqueous mixtures of a dye-labeled non-ionic thermoresponsive copolymer and a conjugated cationic polyelectrolyte are shown to exhibit characteristic changes in fluorescence properties in response to temperature and to the presence of salts, enabling a double-stimuli responsiveness. In such mixtures at room temperature, i.e., well below the lower critical solution temperature (LCST), the emission of the dye is strongly quenched due to energy transfer to the polycation, pointing to supramolecular interactions between the two macromolecules. Increasing the concentration of salts weakens the interpolymer interactions, the extent of which is simultaneously monitored from the change in the relative emission intensity of the components. When the mixture is heated above its LCST, the transfer efficiency is significantly reduced, signaling a structural reorganization process, however, surprisingly only if the mixture contains salt ions. To elucidate the reasons behind such thermo- and ion-sensitive fluorescence characteristics, we investigate the effect of salts of alkali chlorides, in particular of NaCl, on the association behavior of these macromolecules before and after the polymer phase transition by a combination of UV-vis, fluorescence, and H-1 NMR spectroscopy with light scattering and small-angle neutron scattering measurements. Y1 - 2013 U6 - https://doi.org/10.1021/jp408864s SN - 1520-6106 VL - 117 IS - 46 SP - 14576 EP - 14587 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Inal, Sahika A1 - Kölsch, Jonas D. A1 - Chiappisi, Leonardo A1 - Janietz, Dietmar A1 - Gradzielski, Michael A1 - Laschewsky, André A1 - Neher, Dieter T1 - Structure-related differences in the temperature-regulated fluorescence response of LCST type polymers N2 - We demonstrate new fluorophore-labelled materials based on acrylamide and on oligo(ethylene glycol) (OEG) bearing thermoresponsive polymers for sensing purposes and investigate their thermally induced solubility transitions. It is found that the emission properties of the polarity-sensitive (solvatochromic) naphthalimide derivative attached to three different thermoresponsive polymers are highly specific to the exact chemical structure of the macromolecule. While the dye emits very weakly below the LCST when incorporated into poly(N-isopropylacrylamide) (pNIPAm) or into a polyacrylate backbone bearing only short OEG side chains, it is strongly emissive in polymethacrylates with longer OEG side chains. Heating of the aqueous solutions above their cloud point provokes an abrupt increase of the fluorescence intensity of the labelled pNIPAm, whereas the emission properties of the dye are rather unaffected as OEG-based polyacrylates and methacrylates undergo phase transition. Correlated with laser light scattering studies, these findings are ascribed to the different degrees of pre-aggregation of the chains at low temperatures and to the extent of dehydration that the phase transition evokes. It is concluded that although the temperature-triggered changes in the macroscopic absorption characteristics, related to large-scale alterations of the polymer chain conformation and aggregation, are well detectable and similar for these LCST-type polymers, the micro-environment provided to the dye within each polymer network differs substantially. Considering sensing applications, this finding is of great importance since the temperature-regulated fluorescence response of the polymer depends more on the macromolecular architecture than the type of reporter fluorophore. Y1 - 2013 UR - http://pubs.rsc.org/en/content/articlepdf/2013/tc/c3tc31304b U6 - https://doi.org/10.1039/C3TC31304B ER - TY - JOUR A1 - Inal, Sahika A1 - Kölsch, Jonas D. A1 - Selrie, Frank A1 - Schenk, Jörg A. A1 - Wischerhoff, Erik A1 - Laschewsky, André A1 - Neher, Dieter T1 - A water soluble fluorescent polymer as a dual colour sensor for temperature and a specific protein N2 - We present two thermoresponsive water soluble copolymers prepared via free radical statistical copolymerization of N-isopropylacrylamide (NIPAm) and of oligo(ethylene glycol) methacrylates (OEGMAs), respectively, with a solvatochromic 7-(diethylamino)-3-carboxy-coumarin (DEAC)-functionalized monomer. In aqueous solutions, the NIPAm-based copolymer exhibits characteristic changes in its fluorescence profile in response to a change in solution temperature as well as to the presence of a specific protein, namely an anti-DEAC antibody. This polymer emits only weakly at low temperatures, but exhibits a marked fluorescence enhancement accompanied by a change in its emission colour when heated above its cloud point. Such drastic changes in the fluorescence and absorbance spectra are observed also upon injection of the anti-DEAC antibody, attributed to the specific binding of the antibody to DEAC moieties. Importantly, protein binding occurs exclusively when the polymer is in the well hydrated state below the cloud point, enabling a temperature control on the molecular recognition event. On the other hand, heating of the polymer-antibody complexes releases a fraction of the bound antibody. In the presence of the DEAC-functionalized monomer in this mixture, the released antibody competitively binds to the monomer and the antibody-free chains of the polymer undergo a more effective collapse and inter-aggregation. In contrast, the emission properties of the OEGMA-based analogous copolymer are rather insensitive to the thermally induced phase transition or to antibody binding. These opposite behaviours underline the need for a carefully tailored molecular design of responsive polymers aimed at specific applications, such as biosensing. Y1 - 2013 UR - http://pubs.rsc.org/en/content/articlepdf/2013/tb/c3tb21245a U6 - https://doi.org/10.1039/c3tb21245a ER - TY - JOUR A1 - Li, Hongguang A1 - Babu, Sukumaran Santhosh A1 - Turner, Sarah T. A1 - Neher, Dieter A1 - Hollamby, Martin J. A1 - Tomohito, Seki A1 - Yagai, Shiki A1 - deguchi, Yonekazu A1 - Möhwald, Helmuth A1 - Nakanishi, Takashi T1 - Alkylated-C60 based soft materials: regulation of self-assembly and optoelectronic properties by chain branching N2 - Derivatization of fullerene (C60) with branched aliphatic chains softens C60-based materials and enables the formation of thermotropic liquid crystals and room temperature nonvolatile liquids. This work demonstrates that by carefully tuning parameters such as type, number and substituent position of the branched chains, liquid crystalline C60 materials with mesophase temperatures suited for photovoltaic cell fabrication and room temperature nonvolatile liquid fullerenes with tunable viscosity can be obtained. In particular, compound 1, with branched chains, exhibits a smectic liquid crystalline phase extending from 84°C to room temperature. Analysis of bulk heterojunction (BHJ) organic solar cells with a ca. 100 nm active layer of compound 1 and poly(3-hexylthiophene) (P3HT) as an electron acceptor and an electron donor, respectively, reveals an improved performance (power conversion efficiency, PCE: 1.6 ñ 0.1%) in comparison with another compound, 10 (PCE: 0.5 ñ 0.1%). The latter, in contrast to 1, carries linear aliphatic chains and thus forms a highly ordered solid lamellar phase at room temperature. The solar cell performance of 1 blended with P3HT approaches that of PCBM/P3HT for the same active layer thickness. This indicates that C60 derivatives bearing branched tails are a promising class of electron acceptors in soft (flexible) photovoltaic devices. Y1 - 2013 UR - http://pubs.rsc.org/en/content/articlepdf/2013/tc/c3tc00066d U6 - https://doi.org/10.1039/C3TC00066D ER -