TY - JOUR A1 - Reschke, Maria A1 - Kröner, Igor A1 - Laepple, Thomas T1 - Testing the consistency of Holocene and Last Glacial Maximum spatial correlations in temperature proxy records JF - Journal of quaternary science : JQS N2 - Holocene temperature proxy records are commonly used in quantitative synthesis and model-data comparisons. However, comparing correlations between time series from records collected in proximity to one another with the expected correlations based on climate model simulations indicates either regional or noisy climate signals in Holocene temperature proxy records. In this study, we evaluate the consistency of spatial correlations present in Holocene proxy records with those found in data from the Last Glacial Maximum (LGM). Specifically, we predict correlations expected in LGM proxy records if the only difference to Holocene correlations would be due to more time uncertainty and more climate variability in the LGM. We compare this simple prediction to the actual correlation structure in the LGM proxy records. We found that time series data of ice-core stable isotope records and planktonic foraminifera Mg/Ca ratios were consistent between the Holocene and LGM periods, while time series of Uk'37 proxy records were not as we found no correlation between nearby LGM records. Our results support the finding of highly regional or noisy marine proxy records in the compilation analysed here and suggest the need for further studies on the role of climate proxies and the processes of climate signal recording and preservation. KW - Holocene KW - LGM KW - spatial correlation KW - temperature KW - Uk'37 Y1 - 2020 U6 - https://doi.org/10.1002/jqs.3245 SN - 0267-8179 SN - 1099-1417 VL - 36 IS - 1 SP - 20 EP - 28 PB - Wiley CY - New York ER - TY - GEN A1 - Reschke, Maria A1 - Kröner, Igor A1 - Laepple, Thomas T1 - Testing the consistency of Holocene and Last Glacial Maximum spatial correlations in temperature proxy records T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Holocene temperature proxy records are commonly used in quantitative synthesis and model-data comparisons. However, comparing correlations between time series from records collected in proximity to one another with the expected correlations based on climate model simulations indicates either regional or noisy climate signals in Holocene temperature proxy records. In this study, we evaluate the consistency of spatial correlations present in Holocene proxy records with those found in data from the Last Glacial Maximum (LGM). Specifically, we predict correlations expected in LGM proxy records if the only difference to Holocene correlations would be due to more time uncertainty and more climate variability in the LGM. We compare this simple prediction to the actual correlation structure in the LGM proxy records. We found that time series data of ice-core stable isotope records and planktonic foraminifera Mg/Ca ratios were consistent between the Holocene and LGM periods, while time series of Uk'37 proxy records were not as we found no correlation between nearby LGM records. Our results support the finding of highly regional or noisy marine proxy records in the compilation analysed here and suggest the need for further studies on the role of climate proxies and the processes of climate signal recording and preservation. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1222 KW - Holocene KW - LGM KW - spatial correlation KW - temperature KW - Uk’37 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-538197 SN - 1866-8372 IS - 1 SP - 20 EP - 28 ER - TY - JOUR A1 - Anoop, A. A1 - Prasad, S. A1 - Basavaiah, Nathani A1 - Brauer, Achim A1 - Shahzad, F. A1 - Deenadayalan, K. T1 - Tectonic versus climate influence on landscape evolution: A case study from the upper Spiti valley, NW Himalaya JF - Geomorphology : an international journal on pure and applied geomorphology N2 - We have undertaken structural, geomorphological, and morphometric analyses to investigate the role of tectonism and climate in the landscape evolution in the upper Spiti valley, NW Himalayas. Geomorphometric analyses coupled with field investigations reveal active tectonic deformation in the Spiti region. The calculated geomorphic indices (steepness, concavity and Hack) demonstrate uplift/subsidence along the Kaurik-Chango fault, whereas transverse topographic index (T-index) reveals basin tilting associated with active faulting near Hansa and Lingti valley. Investigation of well-dated Mane palaeolake sediments also provides evidence of regional tectonic instability. Four episodes (ca. 7.8, 7.4, 6.5 and 6.1 cal ka) of neotectonic activity have been identified during the period of the lake's existence. We have also compiled data on the regional climate variability and compared it with the age of the Mane palaeo-landslide. Our results indicate that the landslide occurred towards the end of the early Holocene intensified monsoon phase and is located near an active fault. Our data on regional tectonic instability and the coincidences of modern and palaeo-landslides with zones of active deformation suggest that tectonism is an important factor governing landscape stability in the Spiti region. KW - Geomorphic indices KW - Holocene KW - Palaeo-lake sediments KW - Palaeo-landslides KW - Monsoon Y1 - 2012 U6 - https://doi.org/10.1016/j.geomorph.2011.10.028 SN - 0169-555X VL - 145 IS - 4 SP - 32 EP - 44 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Dallmeyer, A. A1 - Claussen, Martin A1 - Wang, Y. A1 - Herzschuh, Ulrike T1 - Spatial variability of Holocene changes in the annual precipitation pattern a model-data synthesis for the Asian monsoon region JF - Climate dynamics : observational, theoretical and computational research on the climate system N2 - This study provides a detailed analysis of the mid-Holocene to present-day precipitation change in the Asian monsoon region. We compare for the first time results of high resolution climate model simulations with a standardised set of mid-Holocene moisture reconstructions. Changes in the simulated summer monsoon characteristics (onset, withdrawal, length and associated rainfall) and the mechanisms causing the Holocene precipitation changes are investigated. According to the model, most parts of the Indian subcontinent received more precipitation (up to 5 mm/day) at mid-Holocene than at present-day. This is related to a stronger Indian summer monsoon accompanied by an intensified vertically integrated moisture flux convergence. The East Asian monsoon region exhibits local inhomogeneities in the simulated annual precipitation signal. The sign of this signal depends on the balance of decreased pre-monsoon and increased monsoon precipitation at mid-Holocene compared to present-day. Hence, rainfall changes in the East Asian monsoon domain are not solely associated with modifications in the summer monsoon circulation but also depend on changes in the mid-latitudinal westerly wind system that dominates the circulation during the pre-monsoon season. The proxy-based climate reconstructions confirm the regional dissimilarities in the annual precipitation signal and agree well with the model results. Our results highlight the importance of including the pre-monsoon season in climate studies of the Asian monsoon system and point out the complex response of this system to the Holocene insolation forcing. The comparison with a coarse climate model simulation reveals that this complex response can only be resolved in high resolution simulations. KW - Asian monsoon KW - Holocene KW - Precipitation KW - Climate modelling KW - Moisture reconstructions Y1 - 2013 U6 - https://doi.org/10.1007/s00382-012-1550-6 SN - 0930-7575 SN - 1432-0894 VL - 40 IS - 11-12 SP - 2919 EP - 2936 PB - Springer CY - New York ER - TY - GEN A1 - Cao, Xianyong A1 - Herzschuh, Ulrike A1 - Ni, Jian A1 - Zhao, Yan A1 - Böhmer, Thomas T1 - Spatial and temporal distributions of major tree taxa in eastern continental Asia during the last 22,000 years T2 - The Holocene N2 - This study investigates the spatial and temporal distributions of 14 key arboreal taxa and their driving forces during the last 22,000 calendar years before ad 1950 (kyr BP) using a taxonomically harmonized and temporally standardized fossil pollen dataset with a 500-year resolution from the eastern part of continental Asia. Logistic regression was used to estimate pollen abundance thresholds for vegetation occurrence (presence or dominance), based on modern pollen data and present ranges of 14 taxa in China. Our investigation reveals marked changes in spatial and temporal distributions of the major arboreal taxa. The thermophilous (Castanea, Castanopsis, Cyclobalanopsis, Fagus, Pterocarya) and eurythermal (Juglans, Quercus, Tilia, Ulmus) broadleaved tree taxa were restricted to the current tropical or subtropical areas of China during the Last Glacial Maximum (LGM) and spread northward since c. 14.5 kyr BP. Betula and conifer taxa (Abies, Picea, Pinus), in contrast, retained a wider distribution during the LGM and showed no distinct expansion direction during the Late Glacial. Since the late mid-Holocene, the abundance but not the spatial extent of most trees decreased. The changes in spatial and temporal distributions for the 14 taxa are a reflection of climate changes, in particular monsoonal moisture, and, in the late Holocene, human impact. The post-LGM expansion patterns in eastern continental China seem to be different from those reported for Europe and North America, for example, the westward spread for eurythermal broadleaved taxa. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 417 KW - China KW - Holocene KW - Last Glacial Maximum KW - pollen mapping KW - vegetation expansion Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-404176 VL - 25 IS - 1 ER - TY - JOUR A1 - Cao, Xianyong A1 - Herzschuh, Ulrike A1 - Ni, Jian A1 - Zhao, Yan A1 - Böhmer, Thomas T1 - Spatial and temporal distributions of major tree taxa in eastern continental Asia during the last 22,000 years JF - The Holocene : an interdisciplinary journal focusing on recent environmental change N2 - This study investigates the spatial and temporal distributions of 14 key arboreal taxa and their driving forces during the last 22,000 calendar years before ad 1950 (kyr BP) using a taxonomically harmonized and temporally standardized fossil pollen dataset with a 500-year resolution from the eastern part of continental Asia. Logistic regression was used to estimate pollen abundance thresholds for vegetation occurrence (presence or dominance), based on modern pollen data and present ranges of 14 taxa in China. Our investigation reveals marked changes in spatial and temporal distributions of the major arboreal taxa. The thermophilous (Castanea, Castanopsis, Cyclobalanopsis, Fagus, Pterocarya) and eurythermal (Juglans, Quercus, Tilia, Ulmus) broadleaved tree taxa were restricted to the current tropical or subtropical areas of China during the Last Glacial Maximum (LGM) and spread northward since c. 14.5kyr BP. Betula and conifer taxa (Abies, Picea, Pinus), in contrast, retained a wider distribution during the LGM and showed no distinct expansion direction during the Late Glacial. Since the late mid-Holocene, the abundance but not the spatial extent of most trees decreased. The changes in spatial and temporal distributions for the 14 taxa are a reflection of climate changes, in particular monsoonal moisture, and, in the late Holocene, human impact. The post-LGM expansion patterns in eastern continental China seem to be different from those reported for Europe and North America, for example, the westward spread for eurythermal broadleaved taxa. KW - China KW - Holocene KW - Last Glacial Maximum KW - pollen mapping KW - vegetation expansion Y1 - 2015 U6 - https://doi.org/10.1177/0959683614556385 SN - 0959-6836 SN - 1477-0911 VL - 25 IS - 1 SP - 79 EP - 91 PB - Sage Publ. CY - London ER - TY - THES A1 - Bittermann, Klaus T1 - Semi-empirical sea-level modelling T1 - Semiempirische Meeresspiegelmodellierung N2 - Semi-empirical sea-level models (SEMs) exploit physically motivated empirical relationships between global sea level and certain drivers, in the following global mean temperature. This model class evolved as a supplement to process-based models (Rahmstorf (2007)) which were unable to fully represent all relevant processes. They thus failed to capture past sea-level change (Rahmstorf et al. (2012)) and were thought likely to underestimate future sea-level rise. Semi-empirical models were found to be a fast and useful tool for exploring the uncertainties in future sea-level rise, consistently giving significantly higher projections than process-based models. In the following different aspects of semi-empirical sea-level modelling have been studied. Models were first validated using various data sets of global sea level and temperature. SEMs were then used on the glacier contribution to sea level, and to infer past global temperature from sea-level data via inverse modelling. Periods studied encompass the instrumental period, covered by tide gauges (starting 1700 CE (Common Era) in Amsterdam) and satellites (first launched in 1992 CE), the era from 1000 BCE (before CE) to present, and the full length of the Holocene (using proxy data). Accordingly different data, model formulations and implementations have been used. It could be shown in Bittermann et al. (2013) that SEMs correctly predict 20th century sea-level when calibrated with data until 1900 CE. SEMs also turned out to give better predictions than the Intergovernmental Panel on Climate Change (IPCC) 4th assessment report (AR4, IPCC (2007)) models, for the period from 1961–2003 CE. With the first multi-proxy reconstruction of global sea-level as input, estimate of the human-induced component of modern sea-level change and projections of future sea-level rise were calculated (Kopp et al. (2016)). It turned out with 90% confidence that more than 40 % of the observed 20th century sea-level rise is indeed anthropogenic. With the new semi-empirical and IPCC (2013) 5th assessment report (AR5) projections the gap between SEM and process-based model projections closes, giving higher credibility to both. Combining all scenarios, from strong mitigation to business as usual, a global sea-level rise of 28–131 cm relative to 2000 CE, is projected with 90% confidence. The decision for a low carbon pathway could halve the expected global sea-level rise by 2100 CE. Present day temperature and thus sea level are driven by the globally acting greenhouse-gas forcing. Unlike that, the Milankovich forcing, acting on Holocene timescales, results mainly in a northern-hemisphere temperature change. Therefore a semi-empirical model can be driven with northernhemisphere temperatures, which makes it possible to model the main subcomponent of sea-level change over this period. It showed that an additional positive constant rate of the order of the estimated Antarctic sea-level contribution is then required to explain the sea-level evolution over the Holocene. Thus the global sea level, following the climatic optimum, can be interpreted as the sum of a temperature induced sea-level drop and a positive long-term contribution, likely an ongoing response to deglaciation coming from Antarctica. N2 - Semiempirische Meeresspiegelmodelle (SEMe) nutzen die physikalisch motivierte, empirische Beziehung des globalen Meeresspiegels zu einem bestimmten Antrieb. Im Folgenden ist das die mittlere globale Temperatur. Diese Modellklasse entstand als Ergänzung zu prozeßbasierten Modellen, die nicht alle relevanten Prozesse abbilden konnten (Rahmstorf (2007)) und die deshalb weder den beobachteten Meeresspiegel erklären konnten (Rahmstorf et al. (2012)) noch vertrauenswürdige Zukunftsprojektionen lieferten. Semiempirische Modelle sind eine gute und schnelle Option, die Unsicherheit im zukünftigen Meeresspiegelanstieg auszuloten, wobei sie konsistent höhere Zukunftsprojektionen lieferten als prozeßbasierte Modelle. Im Folgenden wurden verschiedene Aspekte der semiempirischen Meeresspiegelmodellierung untersucht. Modelle wurden erst mit verschiedenen globalen Temperatur- und Meeresspiegeldatensätzen validiert. SEMe wurden dann auf den Meeresspiegelbeitrag von Gletschern angewandt und genutzt, um die globale Temperatur aus Meeresspiegeldaten abzuleiten. Die untersuchten Zeiträume variieren zwischen dem instrumentellen Abschnitt mit Pegelstandsmessungen (seit dem Jahr 1700 in Amsterdam) und Satellitendaten (seit 1992), dem Zeitraum seit 1000 vor Christus und dem gesamten Holozän (mittels Proxydaten). Entsprechend wurden verschiedene Daten, Modellformulierungen und -implementationen benutzt. Es konnte in Bittermann et al. (2013) gezeigt werden, dass SEMe den beobachteten Meeresspiegel des 20sten Jahrhunderts korrekt vorhersagen können, wenn sie bis zum Jahr 1900 kalibriert wurden. Auch für den Zeitraum 1961 bis 2003 lieferten SEMe bessere Vorhersagen als der vierte Sachstandsbericht des Intergovernmental Panel on Climate Change (AR4, IPCC (2007)). Mit der ersten globalen multi-proxy Rekonstruktion des globalen Meeresspiegels als Input konnten sowohl der anthropogene Anteil des modernen Meeresspiegelanstiegs als auch Zukunftsprojektionen berechnet werden (Kopp et al. (2016)). Es zeigt sich mit 90% Sicherheit, dass mehr als 40 % des beobachteten Meeresspiegelanstiegs im 20sten Jahrhundert anthropogenen Ursprungs sind. Mit den neuen semiempirischen Zukunftsprojektionen und denen des fünften Sachstandsberichtes (AR5) des IPCC (2013) läßt sich die Kluft zwischen SEMen und prozeßbasierten Modellen schließen, was beide vertrauenswürdiger macht. Über alle Szenarien hinweg, von starker Treibhausgaseinsparung bis zum ungebremsten Ausstoß, ergibt sich, mit 90% Sicherheit, zwischen 2000 und 2100 ein Meeresspiegelanstieg von 28 bis 131 cm. Die Entscheidung starker Treibhausgaseinsparungen kann den erwarteten globalen Meeresspiegelanstieg im Jahr 2100 halbieren. Die gegenwärtige globale Temperatur, und damit der globale Meeresspiegel, werden von dem global wirkenden Treibhausgasforcing bestimmt. Im Gegensatz dazu wirkt das orbitale Forcing, welches über Holozän-Zeitskalen dominiert, hauptsächlich auf die Nordhemisphäre. Deshalb kann man ein SEM mit Nordhemisphärentemperaturen antreiben und dadurch die Hauptkomponente der Meeresspiegeländerung über das Holozän simulieren. Es stellte sich heraus, dass eine zusätzliche konstante Rate, von der Größenordnung des antarktischen Beitrags zum Meeresspiegel, nötig ist, um den Meeresspiegelverlauf des Holozäns zu erklären. Der Meeresspiegel seit dem Holozän-Klimaoptimum kann also als eine Summe von temperaturbedingtem Fallen und einem langfristigen positiven Beitrag, wahrscheinlich einer andauernden Reaktion auf die Deglaziation der Antarktis, interpretiert werden. KW - sea level KW - Meeresspiegel KW - climate change KW - Klimawandel KW - projections KW - Projektionen KW - anthropogenic sea level KW - anthropogener Meeresspiegel KW - Holocene KW - Holozän KW - semi-empirical models KW - semiempirische Modelle Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-93881 ER - TY - JOUR A1 - Syrykh, Lydmila S. A1 - Nazarova, Larisa B. A1 - Herzschuh, Ulrike A1 - Subetto, D. A. A1 - Grekov, I. M. T1 - Reconstruction of palaeoecological and palaeoclimatic conditions of the Holocene in the south of the Taimyr according to an analysis of lake sediments JF - Contemporary Problems of Ecology N2 - A sediment core from Khatanga-12 Lake (Taimyr Peninsula, Krasnoyarsk krai) has been studied. The 131.5-cm-long core covers ca. 7100 years of sedimentation. Chironomid analysis, a qualitative reconstruction of the paleoenvironment in the region, and a quantitative reconstruction of variations of the mean July air temperature and in the water depth of the lake have been performed using Northern Russia chironomid-inferred mean July temperature models (Nazarova et al., 2008, 2011, 2015). Khatanga-12 Lake was formed during the Middle Holocene warming as a result of thermokarst processes. The development of the lake ecosystem at different stages of its development was influenced by climatic and cryolithogenic factors. The Middle Holocene warming, which occurred around 7100-6250 cal. years BP, activated thermokarst processes and resulted in the formation of the lake basin. Later, between 6250 and 4500 cal. years BP, a period of cooling took place, as is proved by chironomid analysis. The bottom sediments of the lake during this period were formed by erosion processes on the lake shores. The reconstructed conditions were close to the modern after 2500 cal. years BP. KW - Chironomidae KW - paleolimnology KW - Holocene KW - climate reconstructions KW - Russian Arctic region KW - Khatanga Y1 - 2017 U6 - https://doi.org/10.1134/S1995425517040114 SN - 1995-4255 SN - 1995-4263 VL - 10 SP - 363 EP - 369 PB - Pleiades Publ. CY - New York ER - TY - THES A1 - Wischnewski, Juliane T1 - Reconstructing climate variability on the Tibetan Plateau : comparing aquatic and terrestrial signals T1 - Klimarekonstruktionen auf dem Tibet Plateau : aquatische und terrestrische Signale im Vergleich N2 - Spatial and temporal temperature and moisture patterns across the Tibetan Plateau are very complex. The onset and magnitude of the Holocene climate optimum in the Asian monsoon realm, in particular, is a subject of considerable debate as this time period is often used as an analogue for recent global warming. In the light of contradictory inferences regarding past climate and environmental change on the Tibetan Plateau, I have attempted to explain mismatches in the timing and magnitude of change. Therefore, I analysed the temporal variation of fossil pollen and diatom spectra and the geochemical record from palaeo-ecological records covering different time scales (late Quaternary and the last 200 years) from two core regions in the NE and SE Tibetan Plateau. For interpretation purposes I combined my data with other available palaeo-ecological data to set up corresponding aquatic and terrestrial proxy data sets of two lake pairs and two sets of sites. I focused on the direct comparison of proxies representing lacustrine response to climate signals (e.g., diatoms, ostracods, geochemical record) and proxies representing changes in the terrestrial environment (i.e., terrestrial pollen), in order to asses whether the lake and its catchments respond at similar times and magnitudes to environmental changes. Therefore, I introduced the established numerical technique procrustes rotation as a new approach in palaeoecology to quantitatively compare raw data of any two sedimentary records of interest in order to assess their degree of concordance. Focusing on the late Quaternary, sediment cores from two lakes (Kuhai Lake 35.3°N; 99.2°E; 4150 m asl; and Koucha Lake 34.0°N; 97.2°E; 4540 m asl) on the semi-arid northeastern Tibetan Plateau were analysed to identify post-glacial vegetation and environmental changes, and to investigate the responses of lake ecosystems to such changes. Based on the pollen record, five major vegetation and climate changes could be identified: (1) A shift from alpine desert to alpine steppe indicates a change from cold, dry conditions to warmer and more moist conditions at 14.8 cal. ka BP, (2) alpine steppe with tundra elements points to conditions of higher effective moisture and a stepwise warming climate at 13.6 cal. ka BP, (3) the appearance of high-alpine meadow vegetation indicates a further change towards increased moisture, but with colder temperatures, at 7.0 cal. ka BP, (4) the reoccurrence of alpine steppe with desert elements suggests a return to a significantly colder and drier phase at 6.3 cal. ka BP, and (5) the establishment of alpine steppe-meadow vegetation indicates a change back to relatively moist conditions at 2.2 cal. ka BP. To place the reconstructed climate inferences from the NE Tibetan Plateau into the context of Holocene moisture evolution across the Tibetan Plateau, I applied a five-scale moisture index and average link clustering to all available continuous pollen and non-pollen palaeoclimate records from the Tibetan Plateau, in an attempt to detect coherent regional and temporal patterns of moisture evolution on the Plateau. However, no common temporal or spatial pattern of moisture evolution during the Holocene could be detected, which can be assigned to the complex responses of different proxies to environmental changes in an already very heterogeneous mountain landscape, where minor differences in elevation can result in marked variations in microenvironments. Focusing on the past 200 years, I analysed the sedimentary records (LC6 Lake 29.5°N, 94.3°E, 4132 m asl; and Wuxu Lake 29.9°N, 101.1°E, 3705 m asl) from the southeastern Tibetan Plateau. I found that despite presumed significant temperature increases over that period, pollen and diatom records from the SE Tibetan Plateau reveal only very subtle changes throughout their profiles. The compositional species turnover investigated over the last 200 years appears relatively low in comparison to the species reorganisations during the Holocene. The results indicate that climatically induced ecological thresholds are not yet crossed, but that human activity has an increasing influence, particularly on the terrestrial ecosystem. Forest clearances and reforestation have not caused forest decline in our study area, but a conversion of natural forests to semi-natural secondary forests. The results from the numerical proxy comparison of the two sets of two pairs of Tibetan lakes indicate that the use of different proxies and the work with palaeo-ecological records from different lake types can cause deviant stories of inferred change. Irrespective of the timescale (Holocene or last 200 years) or region (SE or NE Tibetan Plateau) analysed, the agreement in terms of the direction, timing, and magnitude of change between the corresponding terrestrial data sets is generally better than the match between the corresponding lacustrine data sets, suggesting that lacustrine proxies may partly be influenced by in-lake or local catchment processes whereas the terrestrial proxy reflects a more regional climatic signal. The current disaccord on coherent temporal and spatial climate patterns on the Tibetan Plateau can partly be ascribed to the complexity of proxy response and lake systems on the Tibetan Plateau. Therefore, a multi-proxy, multi-site approach is important in order to gain a reliable climate interpretation for the complex mountain landscape of the Tibetan Plateau. N2 - Die räumlichen und zeitlichen Temperatur- und Feuchtigkeitsmuster auf dem Tibet-Plateau sind sehr komplex. Im Einzugsbereich der asiatischen Monsune sind insbesondere der Beginn und das Ausmaß des Klimaoptimums während des Holozäns von wissenschaftlichem Interesse, da diese Periode oft als Analogie für die derzeitige globale Klimaerwärmung herangezogen wird. In Hinblick auf sich teilweise widersprechende Paläoklima- und Umweltrekonstruktionen für das Tibet-Plateau, ist es mein Ziel, die bestehenden Unstimmigkeiten bezüglich des Zeitpunktes und des Ausmaßes des Umweltwandels zu erklären. Dafür wurden von mir zeitliche Variationen fossiler Pollen- und Diatomeenspektren und geochemische Untersuchungen an Seesedimenten unterschiedlicher Zeitskalen (Spätquartär und die letzten 200 Jahre) aus zwei Kernregionen auf dem NO und SO Tibet-Plateau analysiert. Zur Unterstützung der Interpretation wurden die hier erhobenen Daten mit bereits vorhandenen paläoökologischen Aufzeichnungen der Lokalitäten kombiniert, um Datensätze der entsprechenden aquatischen und terrestrischen Proxy-Daten (Stellvertreterdaten) zweier Seenpaare aus den beiden Regionen gegenüberstellen zu können. Hierbei konzentrierte ich mich auf den direkten Vergleich von Proxies, die die Seenentwicklung reflektieren (z.B. Diatomeen, Ostracoden, geochemische Eigenschaften), mit Proxies, die Veränderungen der terrestrischen Umgebung des Sees beschreiben (terrestrische Pollen). Durch diesen Vergleich lässt sich beurteilen, ob Veränderungen im See selbst mit Umweltveränderungen in dem jeweiligen Einzugsgebiet zeitlich übereinstimmen. Dafür habe ich die bereits etablierte numerische Methode Procrustes-Rotation als neuen Ansatz in der Paläoökologie eingeführt. Damit ist ein quantitativer Vergleich von Rohdaten zweier beliebiger sedimentärer Datensätze möglich, um den Grad der Übereinstimmung zu prüfen. Um die in dieser Arbeit rekonstruierten Umwelt- und Klimaereignisse des nordöstlichen Tibet-Plateaus in einen größeren Zusammenhang hinsichtlich holozäner Klimaentwicklung des gesamten Plateaus setzen zu können, und um schlüssige zeitliche und räumliche Klimatrends auf dem Plateau erkennen zu können, habe ich auf alle vorhandenen Paläoklimadatensätze einen Fünf-Skalen Feuchtigkeitsindex und eine Clusteranalyse angewandt. Es konnten jedoch keine einheitlichen zeitlichen und räumlichen Trends der holozänen Klimaentwicklung nachgewiesen werden, was meiner Analyse entsprechend, auf die komplexen Reaktionen verschiedener Proxies auf Umweltveränderungen in einer ohnehin sehr heterogen Berglandschaft, zurückgeführt werden kann. Die Ergebnisse des numerischen Proxy-Vergleichs beider Seenpaare zeigen, dass die Verwendung von verschiedenen Proxies und die Arbeit mit paläo-ökologischen Datensätzen unterschiedlicher See-Typen zu abweichenden Klimaableitungen führen können. Unabhängig vom untersuchten Zeitraum (Holozän oder die letzten 200 Jahren) oder der Region (SO oder NO Tibet-Plateau), ist die Übereinstimmung zweier Datensätze hinsichtlich der Richtung, des Zeitpunktes und des Ausmaßes der abgeleiteten Paläo-Umweltverhältnisse in der Regel zwischen den entsprechenden terrestrischen Datensätzen besser als zwischen den entsprechenden lakustrinen Datensätzen. Die derzeitige Uneinigkeit über stimmige zeitliche und räumliche Klimatrends auf dem Tibet-Plateau kann daher teilweise der Komplexität der verschieden Proxies und ihrer individuellen Empfindlichkeiten gegenüber Umweltveränderungen sowie der unterschiedlichen Reaktionsweise verschiedenartiger See-Systeme auf dem Plateau zugeschrieben werden. Meine Ergebnisse zeigen, dass ein „Multi-Proxy-Multi-Site-Ansatz“ für zuverlässige Paläoklimaableitungen für das Tibet-Plateau von zentraler Bedeutung ist. KW - Tibet Plateau KW - Holozän KW - Pollen KW - Diatomeen KW - Prokrustes Analyse KW - Tibetan Plateau KW - Holocene KW - Pollen KW - Diatoms KW - Procrustes rotation analysis Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-52453 ER - TY - JOUR A1 - Mishra, Praveen Kumar A1 - Anoop, Ambili A1 - Schettler, Georg A1 - Prasad, Sushma A1 - Jehangir, Arshid A1 - Menzel, Peter A1 - Naumann, Rudolf A1 - Yousuf, A. R. A1 - Basavaiah, Nathani A1 - Deenadayalan, Kannan A1 - Wiesner, Martin G. A1 - Gaye, Birgit T1 - Reconstructed late Quaternary hydrological changes from Lake Tso Moriri, NW Himalaya JF - Quaternary international : the journal of the International Union for Quaternary Research N2 - We present the results of our investigations on the radiocarbon dated core sediments from the Lake Tso Moriri, NW Himalaya aimed at reconstructing palaeohydrological changes in this climatically sensitive region. Based on the detailed geochemical, mineralogical and sedimentological analysis, we recognise several short-term fluctuations superimposed upon seven major palaeohydrological stages identified in this lake since similar to 26 cal ka. Stage I (>20.2 cal ka): shallow lake characterised by input of coarse-grained detrital sediments; Stage II (20.2-16.4 cal ka): lake deepening and intensification of this trend ca. 18 cal ka; Stage III (16.4-11.2 cal ka): rising lake levels with a short term wet phase (13.1-11.7 cal ka); Stage IV (11.2-8.5 cal ka): early Holocene hydrological maxima and highest lake levels inferred to have resulted from early Holocene Indian monsoon intensification, as records from central Asia indicate weaker westerlies during this interval; Stage V (8.5-5.5 cal ka): mid-Holocene climate deterioration; Stage VI (5.5-2.7 cal ka): progressive lowering of lake level; Stage VII (2.7-0 cal ka): onset of modern conditions. The reconstructed hydrological variability in Lake Tso Moriri is governed by temperature changes (meltwater inflow) and monsoon precipitation (increased runoff). A regional comparison shows considerable differences with other palaeorecords from peninsular India during late Holocene. (C) 2014 Elsevier Ltd and INQUA. All rights reserved. KW - Authigenic carbonates KW - Holocene KW - Indian summer monsoon KW - Lake sediments KW - Tso Moriri Lake KW - Westerlies Y1 - 2015 U6 - https://doi.org/10.1016/j.quaint.2014.11.040 SN - 1040-6182 SN - 1873-4553 VL - 371 SP - 76 EP - 86 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Wang, Yongbo A1 - Herzschuh, Ulrike T1 - Reassessment of Holocene vegetation change on the upper Tibetan Plateau using the pollen-based REVEALS model JF - Review of palaeobotany and palynology : an international journal N2 - Previous studies based on fossil pollen data have reported significant changes in vegetation on the alpine Tibetan Plateau during the Holocene. However, since the relative proportions of fossil pollen taxa are largely influenced by individual pollen productivities and the dispersal characteristics, such inferences on vegetation have the potential to be considerably biased. We therefore examined the modern pollen-vegetation relationships for four common pollen species on the Tibetan Plateau, using Extended R-value (ERV) models. Assuming an average radius of 100 m for the sampled lakes, we estimated the relevant source area of pollen (RSAP) to be 2200 m (which represents the distance from the lake). Using Poaceae as the reference taxa (Pollen Productivity Estimate, PPE = 1), ERV Submodel 2 derived relative high PPEs for the steppe and desert taxa: 2.079 +/- 0.432 for Artemisia and 5.379 +/- 1.077 for Chenopodiaceae. Low PPEs were estimated for the Cyperaceae (1.036 +/- 0.012). whose plants are characteristic of the alpine Kobresia meadows. Applying these PPEs to four fossil pollen sequences since the Late Glacial, the plant abundances on the central and north-eastern Tibetan Plateau were quantified using the "Regional Estimates of Vegetation Abundance from Large Sites" (REVEALS) model. The proportions of Artemisia and Chenopodiaceae were greatly reduced compared to their original pollen percentages in the reconstructed vegetation, owing to their high productivities and their dispersal characteristics, while Cyperaceae showed a relative increase in the vegetation reconstruction. The reconstructed vegetation assemblages of the four pollen sequence sites always yielded smaller compositional species turnovers than suggested by the pollen spectra, as revealed by Detrended Canonical Correspondence Analyses (DCCA) of the Holocene sections. The strength of the previously reported vegetation changes may therefore have been overestimated, which indicates the importance of taking into account pollen-vegetation relationships when discussing the potential drivers (such as climate, land use, atmospheric CO(2) concentrations) and implications (such as for land surface-climate feedbacks, carbon storage, and biodiversity) of vegetation change. KW - pollen productivity KW - vegetation reconstruction KW - ERV model KW - REVEALS model KW - Holocene KW - Tibetan Plateau Y1 - 2011 U6 - https://doi.org/10.1016/j.revpalbo.2011.09.004 SN - 0034-6667 VL - 168 IS - 1 SP - 31 EP - 40 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Mischke, Steffen A1 - Lai, Zhongping A1 - Aichner, Bernhard A1 - Heinecke, Liv A1 - Mahmoudov, Zafar A1 - Kuessner, Marie A1 - Herzschuh, Ulrike T1 - Radiocarbon and optically stimulated luminescence dating of sediments from Lake Karakul, Tajikistan JF - Quaternary geochronology : the international research and review journal on advances in quaternary dating techniques N2 - Lake Karakul in the eastern Pamirs is a large and closed-basin lake in a partly glaciated catchment. Two parallel sediment cores were collected from 12 m water depth. The cores were correlated using XRF analysis and dated using radiocarbon and OSL techniques. The age results of the two dating methods are generally in agreement. The correlated composite core of 12.26 m length represents continuous accumulation of sediments in the lake basin since 31 ka. The lake reservoir effect (LRE) remained relatively constant over this period. High sediment accumulation rates (SedARs) were recorded before 23 ka and after 6.5 ka. The relatively close position of the coring location near the eastern shore of the lake implies that high SedARs resulted from low lake levels. Thus, high SedARs and lower lake levels before 23 ka probably reflect cold and dry climate conditions that inhibited the arrival of moist air at high elevation in the eastern Pamirs. Low lake levels after 6.5 ka were probably caused by declining temperatures after the warmer early Holocene, which had caused a reduction in water resources stored as snow, ice and frozen ground in the catchment. Low SedARs during 23-6.5 ka suggest increased lake levels in Lake Karakul. A short-lived increase of SedARs at 15 ka probably corresponds to the rapid melting of glaciers in the Karakul catchment during the Greenland Interstadial le, shortly after glaciers in the catchment had reached their maximum extents. The sediment cores from Lake Karakul represent an important climate archive with robust chronology for the last glacial interglacial cycle from Central Asia. (C) 2017 Elsevier B.V. All rights reserved. KW - Radiocarbon and OSL dating KW - Lake sediments KW - Pamir mountains KW - Late pleistocene KW - Holocene Y1 - 2017 U6 - https://doi.org/10.1016/j.quageo.2017.05.008 SN - 1871-1014 SN - 1878-0350 VL - 41 SP - 51 EP - 61 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Marquer, Laurent A1 - Gaillard, Marie-Jose A1 - Sugita, Shinya A1 - Poska, Anneli A1 - Trondman, Anna-Kari A1 - Mazier, Florence A1 - Nielsen, Anne Birgitte A1 - Fyfe, Ralph M. A1 - Jonsson, Anna Maria A1 - Smith, Benjamin A1 - Kaplan, Jed O. A1 - Alenius, Teija A1 - Birks, H. John B. A1 - Bjune, Anne E. A1 - Christiansen, Jorg A1 - Dodson, John A1 - Edwards, Kevin J. A1 - Giesecke, Thomas A1 - Herzschuh, Ulrike A1 - Kangur, Mihkel A1 - Koff, Tiiu A1 - Latalowa, Maligorzata A1 - Lechterbeck, Jutta A1 - Olofsson, Jorgen A1 - Seppa, Heikki T1 - Quantifying the effects of land use and climate on Holocene vegetation in Europe JF - Quaternary science reviews : the international multidisciplinary research and review journal N2 - Early agriculture can be detected in palaeovegetation records, but quantification of the relative importance of climate and land use in influencing regional vegetation composition since the onset of agriculture is a topic that is rarely addressed. We present a novel approach that combines pollen-based REVEALS estimates of plant cover with climate, anthropogenic land-cover and dynamic vegetation modelling results. This is used to quantify the relative impacts of land use and climate on Holocene vegetation at a sub-continental scale, i.e. northern and western Europe north of the Alps. We use redundancy analysis and variation partitioning to quantify the percentage of variation in vegetation composition explained by the climate and land-use variables, and Monte Carlo permutation tests to assess the statistical significance of each variable. We further use a similarity index to combine pollen based REVEALS estimates with climate-driven dynamic vegetation modelling results. The overall results indicate that climate is the major driver of vegetation when the Holocene is considered as a whole and at the sub-continental scale, although land use is important regionally. Four critical phases of land-use effects on vegetation are identified. The first phase (from 7000 to 6500 BP) corresponds to the early impacts on vegetation of farming and Neolithic forest clearance and to the dominance of climate as a driver of vegetation change. During the second phase (from 4500 to 4000 BP), land use becomes a major control of vegetation. Climate is still the principal driver, although its influence decreases gradually. The third phase (from 2000 to 1500 BP) is characterised by the continued role of climate on vegetation as a consequence of late-Holocene climate shifts and specific climate events that influence vegetation as well as land use. The last phase (from 500 to 350 BP) shows an acceleration of vegetation changes, in particular during the last century, caused by new farming practices and forestry in response to population growth and industrialization. This is a unique signature of anthropogenic impact within the Holocene but European vegetation remains climatically sensitive and thus may continue to respond to ongoing climate change. (C) 2017 Elsevier Ltd. All rights reserved. KW - Climate KW - Holocene KW - Human impact KW - Land use KW - LPJ-GUESS KW - Europe KW - Pollen KW - REVEALS KW - Vegetation composition Y1 - 2017 U6 - https://doi.org/10.1016/j.quascirev.2017.07.001 SN - 0277-3791 VL - 171 SP - 20 EP - 37 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Prasad, Sushma A1 - Anoop, A. A1 - Riedel, N. A1 - Sarkar, Saswati A1 - Menzel, P. A1 - Basavaiah, Nathani A1 - Krishnan, R. A1 - Fuller, D. A1 - Plessen, Birgit A1 - Gaye, B. A1 - Roehl, U. A1 - Wilkes, H. A1 - Sachse, Dirk A1 - Sawant, R. A1 - Wiesner, M. G. A1 - Stebich, M. T1 - Prolonged monsoon droughts and links to Indo-Pacific warm pool: A Holocene record from Lonar Lake, central India JF - Earth & planetary science letters N2 - Concerns about the regional impact of global climate change in a warming scenario have highlighted the gaps in our understanding of the Indian Summer Monsoon (ISM, also referred to as the Indian Ocean summer monsoon) and the absence of long term palaeoclimate data from the central Indian core monsoon zone (CMZ). Here we present the first high resolution, well-dated, multiproxy reconstruction of Holocene palaeoclimate from a 10 m long sediment core raised from the Lonar Lake in central India. We show that while the early Holocene onset of-intensified monsoon in the CMZ is similar to that reported from other ISM records, the Lonar data shows two prolonged droughts (PD, multidecadal to centennial periods of weaker monsoon) between 4.6-3.9 and 2-0.6 cal ka. A comparison of our record with available data from other ISM influenced sites shows that the impact of these PD was observed in varying degrees throughout the ISM realm and coincides with intervals of higher solar irradiance. We demonstrate that (i) the regional warming in the Indo-Pacific Warm Pool (IPWP) plays an important role in causing ISM PD through changes in meridional overturning circulation and position of the anomalous Walker cell; (ii) the long term influence of conditions like El Nino-Southern Oscillation (ENSO) on the ISM began only ca. 2 cal ka BP and is coincident with the warming of the southern IPWP; (iii) the first settlements in central India coincided with the onset of the first PD and agricultural populations flourished between the two PD, highlighting the significance of natural climate variability and PD as major environmental factors affecting human settlements. KW - Indian summer monsoon KW - ENSO KW - prolonged droughts KW - Holocene KW - Lonar Lake Y1 - 2014 U6 - https://doi.org/10.1016/j.epsl.2014.01.043 SN - 0012-821X SN - 1385-013X VL - 391 SP - 171 EP - 182 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Pestryakova, Luidmila Agafyevna A1 - Herzschuh, Ulrike A1 - Wetterich, Sebastian A1 - Ulrich, Mathias T1 - Present-day variability and Holocene dynamics of permafrost-affected lakes in central Yakutia (Eastern Siberia) inferred from diatom records JF - Quaternary science reviews : the international multidisciplinary research and review journal N2 - Thermokarst lakes are assumed to develop cyclically, driven by processes that are triggered by climate and maintained by internal feedbacks that may trigger lake drainage. However, the duration of these cycles remains uncertain, as well as whether or not they affect the stabilization of lake ecosystems in permafrost regions over millennial time scales. Our research has combined investigations into modern lake-to-lake variability with a study of the long-term development of individual lakes. We have investigated the physico-chemical and diatom compositions of a set of 101 lakes with a variety of different origins in central Yakutia (Eastern Siberia), including thermokarst lakes, fluvial-erosion thermokarst lakes, fluvial-erosion lakes, and dune lakes. We found a significant relationship between lake genesis and the present-day variability in environmental and diatom characteristics, as revealed by multi-response permutation procedures, indicator species analyses, and redundancy analyses. Environmental parameters also exhibit a significant correlation with variations in the diatom data, for which they may have been to a substantial extent responsible. Mg and SO4 concentrations, together with pH and water depth, were identified as the most important parameters, influencing the variations in the diatom data almost as much as the entire environmental parameter set. We were therefore able to establish a robust Mg-diatom transfer function, which was then applied to three Holocene lake records. From these reconstructions, together with a general interpretation of the diatom record (including, e.g., the ratio between benthic/epiphytic and planktonic taxa), we have been able to infer that all three of these lakes show (1) a continuous record with no desiccation events, (2) high lake water-levels during the early Holocene, (3) centennial to millennial scale variability, and (4) high levels of variability during the early Holocene but rather stable conditions during the late Holocene (a feature that is also known from other sites around the world). We therefore concluded that the development of these three lakes was mainly driven directly by the climate, rather than by thaw lake cycling. KW - Diatoms KW - Holocene KW - Thaw lakes KW - Thermokarst KW - Alas KW - Central Yakutia KW - Alkalinity Y1 - 2012 U6 - https://doi.org/10.1016/j.quascirev.2012.06.020 SN - 0277-3791 VL - 51 SP - 56 EP - 70 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Tian, Fang A1 - Cao, Xianyong A1 - Dallmeyer, Anne A1 - Zhao, Yan A1 - Ni, Jian A1 - Herzschuh, Ulrike T1 - Pollen-climate relationships in time (9 ka, 6 ka, 0 ka) and space (upland vs. lowland) in eastern continental Asia JF - Quaternary science reviews : the international multidisciplinary research and review journal N2 - Temporal and spatial stability of the vegetation climate relationship is a basic ecological assumption for pollen-based quantitative inferences of past climate change and for predicting future vegetation. We explore this assumption for the Holocene in eastern continental Asia (China, Mongolia). Boosted regression trees (BRT) between fossil pollen taxa percentages (Abies, Artemisia, Betula, Chenopodiaceae, Cyperaceae, Ephedra, Picea, Pinus, Poaceae and Quercus) and climate model outputs of mean annual precipitation (P-ann) and mean temperature of the warmest month (Mt(wa)) for 9 and 6 ka (ka = thousand years before present) were set up and results compared to those obtained from relating modern pollen to modern climate. Overall, our results reveal only slight temporal differences in the pollen climate relationships. Our analyses suggest that the importance of P-ann compared with Mt(wa) for taxa distribution is higher today than it was at 6 ka and 9 ka. In particular, the relevance of P-ann for Picea and Pinus increases and has become the main determinant. This change in the climate tree pollen relationship parallels a widespread tree pollen decrease in north-central China and the eastern Tibetan Plateau. We assume that this is at least partly related to vegetation climate disequilibrium originating from human impact. Increased atmospheric CO2 concentration may have permitted the expansion of moisture-loving herb taxa (Cyperaceae and Poaceae) during the late Holocene into arid/semi-arid areas. We furthermore find that the pollen climate relationship between north-central China and the eastern Tibetan Plateau is generally similar, but that regional differences are larger than temporal differences. In summary, vegetation climate relationships in China are generally stable in space and time, and pollen-based climate reconstructions can be applied to the Holocene. Regional differences imply the calibration-set should be restricted spatially. KW - Boosted regression trees KW - China KW - Holocene KW - Niche stability KW - Pollen-climate relationship KW - Uniformitarianism Y1 - 2016 U6 - https://doi.org/10.1016/j.quascirev.2016.11.027 SN - 0277-3791 VL - 156 SP - 1 EP - 11 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Mischke, Steffen A1 - Zhang, Chengjun T1 - Ostracod distribution in Ulungur Lake (Xinjiang, China) and a reassessed Holocene record JF - Ecological research N2 - Ostracod shells in surface sediments from Ulungur Lake (Xinjiang, China) belong mainly to Limnocythere inopinata as the dominant species, and Candona neglecta and Darwinula stevensoni as accompanying, less abundant taxa. Shells of an additional nine species were recorded only sporadically. The three most abundant ostracods have wide tolerance ranges in terms of salinity, substrate and water depth. The similarly recorded bivalve Pisidium subtruncatum, and the gastropods Gyraulus chinensis and Radix auricularia belong to the most tolerant representatives of the genera. The bivalve and gastropods, in addition to the ostracod assemblage, reflect the fact that Ulungur Lake has experienced strong lake level and salinity variations due to water withdrawal in the catchment and the counteracting diversion of river waters to the lake in recent decades. The substrate in Ulungur Lake is typically fine-grained, apart from the delta region of the Ulungur River channel, which is marked by relatively coarse-grained detrital sediments barren of ostracod shells. This channel was created 40 years ago to divert water to Ulungur Lake and support its local fisheries and recreational facilities. A reassessed Holocene ostracod record from the lake shows that a significantly higher salinity and lower lake level existed in the early Holocene before 6.0 ka in response to the regional climate. In contrast, a higher lake level and lowest salinity is inferred for the late Holocene period between ca. 3.6 and 1.3 ka before present. Afterwards, the lake level declined and salinity increased in response to regional moisture reduction, although conditions similar to the early Holocene lake status were not re-established. Our surface-sediment-derived data provide a baseline for analysis of future environmental variations due to global climate change and regional water management. KW - Ostracoda KW - Water depth KW - Substrate KW - Holocene KW - Central Asia Y1 - 2011 U6 - https://doi.org/10.1007/s11284-010-0768-1 SN - 0912-3814 VL - 26 IS - 1 SP - 133 EP - 145 PB - Springer CY - Tokyo ER - TY - JOUR A1 - Cao, Xianyong A1 - Tian, Fang A1 - Dallmeyer, Anne A1 - Herzschuh, Ulrike T1 - Northern Hemisphere biome changes (> 30 degrees N) since 40 cal ka BP and their driving factors inferred from model-data comparisons JF - Quaternary science reviews : the international multidisciplinary research and review journal N2 - Ongoing and past biome transitions are generally assigned to climate and atmospheric changes (e.g. temperature, precipitation, CO2), but the major regional factors or factor combinations that drive vegetation change often remain unknown. Modelling studies applying ensemble runs can help to partition the effects of the different drivers. Such studies require careful validation with observational data. In this study, fossil pollen records from 741 sites in Europe, 728 sites in North America, and 418 sites in Asia (extracted from terrestrial archives including lake sediments) are used to reconstruct biomes at selected time slices between 40 cal ka BP (calibrated thousand years before present) and today. These results are used to validate Northern Hemisphere biome distributions (>30 degrees N) simulated by the biome model BIOME4 that has been forced with climate data simulated by a General Circulation model. Quantitative comparisons between pollen- and model-based results show a generally good fit at a broad spatial scale. Mismatches occur in central-arid Asia with a broader extent of grassland throughout the last 40 ka (likely due to the over-representation of Artemisia and Chenopodiaceae pollen) and in Europe with over-estimation of tundra at 0 cal ka BP (likely due to human impacts to some extent). Sensitivity analysis reveals that broad-scale biome changes follow the global signal of major postglacial temperature change, although the climatic variables vary in their regional and temporal importance. Temperature is the dominant variable in Europe and other rather maritime areas for biome changes between 21 and 14 ka, while precipitation is highly important in the arid inland regions of Asia and North America. The ecophysiological effect of changes in the atmospheric CO2-concentration has the highest impact during this transition than in other intervals. With respect to modern vegetation in the course of global warming, our findings imply that vegetation change in the Northern Hemisphere may be strongly limited by effective moisture changes, i.e. the combined effect of temperature and precipitation, particularly in inland areas. (C) 2019 Elsevier Ltd. All rights reserved. KW - Biomisation KW - Climate warming KW - Europe KW - Holocene KW - Model-data comparison KW - Northern Asia KW - North America KW - Pollen KW - Siberia KW - Vegetation driver Y1 - 2019 U6 - https://doi.org/10.1016/j.quascirev.2019.07.034 SN - 0277-3791 VL - 220 SP - 291 EP - 309 PB - Elsevier CY - Oxford ER - TY - GEN A1 - Schewe, Jacob A1 - Levermann, Anders T1 - Non-linear intensification of Sahel rainfall as a possible dynamic response to future warming T2 - Postprints der Universität Potsdam : Mathematisch Naturwissenschaftliche Reihe N2 - Projections of the response of Sahel rainfall to future global warming diverge significantly. Meanwhile, paleoclimatic records suggest that Sahel rainfall is capable of abrupt transitions in response to gradual forcing. Here we present climate modeling evidence for the possibility of an abrupt intensification of Sahel rainfall under future climate change. Analyzing 30 coupled global climate model simulations, we identify seven models where central Sahel rainfall increases by 40 to 300% over the 21st century, owing to a northward expansion of the West African monsoon domain. Rainfall in these models is non-linearly related to sea surface temperature (SST) in the tropical Atlantic and Mediterranean moisture source regions, intensifying abruptly beyond a certain SST warming level. We argue that this behavior is consistent with a self-amplifying dynamic-thermodynamical feedback, implying that the gradual increase in oceanic moisture availability under warming could trigger a sudden intensification of monsoon rainfall far inland of today's core monsoon region. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 630 KW - moisture-advection feedback KW - abrupt monsoon transitions KW - West African monsoon KW - CMIP5 KW - Holocene KW - climate KW - ocean KW - jet Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-419114 IS - 630 SP - 495 EP - 505 ER - TY - JOUR A1 - Sarkar, Saswati A1 - Prasad, Sushma A1 - Wilkes, Heinz A1 - Riedel, Nils A1 - Stebich, Martina A1 - Basavaiah, Nathani A1 - Sachse, Dirk T1 - Monsoon source shifts during the drying mid-Holocene: Biomarker isotope based evidence from the core 'monsoon zone' (CMZ) of India JF - Quaternary science reviews : the international multidisciplinary research and review journal N2 - A better understanding of past variations of the Indian Summer Monsoon (ISM), that plays a vital role for the still largely agro-based economy in India, can lead to a better assessment of its potential impact under global climate change scenarios. However, our knowledge of spatiotemporal patterns of ISM strength is limited due to the lack of high-resolution, continental paleohydrological records. Here, we reconstruct centennial-scale hydrological variability during the Holocene associated to changes in the intensity of the ISM based on a record of lipid biomarker abundances and compound-specific stable isotopic composition of a 10 m long sediment core from saline alkaline Lonar Lake, situated in the core 'monsoon zone' of central India. We identified three main periods of distinct hydrology during the Holocene in central India. The period between 10.1 and 6 cal ka BP was likely the wettest during the Holocene. Lower average chain length (ACL) index values (29.4-28.6) and negative delta C-13(wax) values (-34.8 parts per thousand to -27.8 parts per thousand) of leaf wax n-alkanes indicate the dominance of woody C-3 vegetation in the catchment, and negative delta D-wax values (concentration weighted average) (-171 parts per thousand to -147 parts per thousand) suggest a wet period due to an intensified monsoon. After 6 cal ka BP, a gradual shift to less negative delta C-13(wax) values (particularly for the grass derived n-C-31) and appearance of the triterpene lipid tetrahymanol, generally considered as a marker for salinity and water column stratification, mark the onset of drier conditions. At 5.1 cal ka BP an increasing flux of leaf wax n-alkanes along with the highest flux of tetrahymanol indicate a major lowering of the lake level. Between 4.8 and 4 cal ka BP, we find evidence for a transition to arid conditions, indicated by high and strongly variable tetrahymanol flux. In addition, a pronounced shift to less negative delta C-13(wax) values, in particular for n-C-31 (-25.2 parts per thousand to -22.8 parts per thousand), during this period indicates a change of dominant vegetation to C-4 grasses. In agreement with other proxy data, such as deposition of evaporite minerals, we interpret this period to reflect the driest conditions in the region during the last 10.1 ka. This transition led to protracted late Holocene arid conditions after 4 ka with the presence of a permanent saline lake, supported by the sustained presence of tetrahymanol and more positive average delta D-wax values (-122 parts per thousand to -141 parts per thousand). A late Holocene peak of cyanobacterial biomarker input at 1.3 cal ka BP might represent an event of lake eutrophication, possibly due to human impact and the onset of cattle/livestock farming in the catchment. A unique feature of our record is the presence of a distinct transitional period between 4.8 and 4 cal ka BP, which was characterized by some of the most negative delta D-wax values during the Holocene (up to -180 parts per thousand), when all other proxy data indicate the driest conditions during the Holocene. These negative delta D-wax values can as such most reasonably be explained by a shift in moisture source area and/or pathways or rainfall seasonality during this transitional period. We hypothesize that orbital induced weakening of the summer solar insolation and associated reorganization of the general atmospheric circulation, as a possible southward displacement of the tropical rainbelt, led to an unstable hydroclimate in central India between 4.8 and 4 ka. KW - Indian Summer Monsoon KW - Holocene KW - Lonar Lake KW - Lipid biomarkers KW - Compound-specific stable isotopic KW - composition Y1 - 2015 U6 - https://doi.org/10.1016/j.quascirev.2015.06.020 SN - 0277-3791 VL - 123 SP - 144 EP - 157 PB - Elsevier CY - Oxford ER -