TY - JOUR A1 - Esfahani, Reza Dokht Dolatabadi A1 - Gholami, Ali A1 - Ohrnberger, Matthias T1 - An inexact augmented Lagrangian method for nonlinear dispersion-curve inversion using Dix-type global linear approximation JF - Geophysics : a journal of general and applied geophysics N2 - Dispersion-curve inversion of Rayleigh waves to infer subsurface shear-wave velocity is a long-standing problem in seismology. Due to nonlinearity and ill-posedness, sophisticated regularization techniques are required to solve the problem for a stable velocity model. We have formulated the problem as a minimization problem with nonlinear operator constraint and then solve it by using an inexact augmented Lagrangian method, taking advantage of the Haney-Tsai Dix-type relation (a global linear approximation of the nonlinear forward operator). This replaces the original regularized nonlinear problem with iterative minimization of a more tractable regularized linear problem followed by a nonlinear update of the phase velocity (data) in which the update can be performed accurately with any forward modeling engine, for example, the finite-element method. The algorithm allows discretizing the medium with thin layers (for the finite-element method) and thus omitting the layer thicknesses from the unknowns and also allows incorporating arbitrary regularizations to shape the desired velocity model. In this research, we use total variation regularization to retrieve the shear-wave velocity model. We use two synthetic and two real data examples to illustrate the performance of the inversion algorithm with total variation regularization. We find that the method is fast and stable, and it converges to the solution of the original nonlinear problem. KW - surface wave KW - nonlinear KW - inversion KW - modeling KW - finite element Y1 - 2020 U6 - https://doi.org/10.1190/geo2019-0717.1 SN - 0016-8033 SN - 1942-2156 VL - 85 IS - 3 SP - EN77 EP - EN85 PB - GeoScienceWorld CY - Tulsa, Okla. ER - TY - JOUR A1 - Fischer, Tomáš A1 - Hrubcova, Pavla A1 - Dahm, Torsten A1 - Woith, Heiko A1 - Vylita, Tomáš A1 - Ohrnberger, Matthias A1 - Vlček, Josef A1 - Horalek, Josef A1 - Dedecek, Petr A1 - Zimmer, Martin A1 - Lipus, Martin P. A1 - Pierdominici, Simona A1 - Kallmeyer, Jens A1 - Krüger, Frank A1 - Hannemann, Katrin A1 - Korn, Michael A1 - Kaempf, Horst A1 - Reinsch, Thomas A1 - Klicpera, Jakub A1 - Vollmer, Daniel A1 - Daskalopoulou, Kyriaki T1 - ICDP drilling of the Eger Rift observatory BT - magmatic fluids driving the earthquake swarms and deep biosphere JF - Scientific drilling : reports on deep earth sampling and monitoring N2 - The new in situ geodynamic laboratory established in the framework of the ICDP Eger project aims to develop the most modern, comprehensive, multiparameter laboratory at depth for studying earthquake swarms, crustal fluid flow, mantle-derived CO2 and helium degassing, and processes of the deep biosphere. In order to reach a new level of high-frequency, near-source and multiparameter observation of earthquake swarms and related phenomena, such a laboratory comprises a set of shallow boreholes with high-frequency 3-D seismic arrays as well as modern continuous real-time fluid monitoring at depth and the study of the deep biosphere. This laboratory is located in the western part of the Eger Rift at the border of the Czech Republic and Germany (in the West Bohemia–Vogtland geodynamic region) and comprises a set of five boreholes around the seismoactive zone. To date, all monitoring boreholes have been drilled. This includes the seismic monitoring boreholes S1, S2 and S3 in the crystalline units north and east of the major Nový Kostel seismogenic zone, borehole F3 in the Hartoušov mofette field and borehole S4 in the newly discovered Bažina maar near Libá. Supplementary borehole P1 is being prepared in the Neualbenreuth maar for paleoclimate and biological research. At each of these sites, a borehole broadband seismometer will be installed, and sites S1, S2 and S3 will also host a 3-D seismic array composed of a vertical geophone chain and surface seismic array. Seismic instrumenting has been completed in the S1 borehole and is in preparation in the remaining four monitoring boreholes. The continuous fluid monitoring site of Hartoušov includes three boreholes, F1, F2 and F3, and a pilot monitoring phase is underway. The laboratory also enables one to analyze microbial activity at CO2 mofettes and maar structures in the context of changes in habitats. The drillings into the maar volcanoes contribute to a better understanding of the Quaternary paleoclimate and volcanic activity. Y1 - 2022 U6 - https://doi.org/10.5194/sd-31-31-2022 SN - 1816-8957 SN - 1816-3459 VL - 31 SP - 31 EP - 49 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Fischer, Tomas A1 - Hrubcova, Pavla A1 - Dahm, Torsten A1 - Woith, Heiko A1 - Vylita, Tomas A1 - Ohrnberger, Matthias A1 - Vlcek, Josef A1 - Horalek, Josef A1 - Dedecek, Petr A1 - Zimmer, Martin A1 - Lipus, Martin P. A1 - Pierdominici, Simona A1 - Kallmeyer, Jens A1 - Krüger, Frank A1 - Hannemann, Katrin A1 - Korn, Michael A1 - Kämpf, Horst A1 - Reinsch, Thomas A1 - Klicpera, Jakub A1 - Vollmer, Daniel A1 - Daskalopoulou, Kyriaki T1 - ICDP drilling of the Eger Rift observatory BT - magmatic fluids driving the earthquake swarms and deep biosphere JF - Scientific Drilling N2 - The new in situ geodynamic laboratory established in the framework of the ICDP Eger project aims to develop the most modern, comprehensive, multiparameter laboratory at depth for studying earthquake swarms, crustal fluid flow, mantle-derived CO2 and helium degassing, and processes of the deep biosphere. In order to reach a new level of high-frequency, near-source and multiparameter observation of earthquake swarms and related phenomena, such a laboratory comprises a set of shallow boreholes with high-frequency 3-D seismic arrays as well as modern continuous real-time fluid monitoring at depth and the study of the deep biosphere. This laboratory is located in the western part of the Eger Rift at the border of the Czech Republic and Germany (in the West Bohemia-Vogtland geodynamic region) and comprises a set of five boreholes around the seismoactive zone. To date, all monitoring boreholes have been drilled. This includes the seismic monitoring boreholes S1, S2 and S3 in the crystalline units north and east of the major Novy Kostel seismogenic zone, borehole F3 in the Hartousov mofette field and borehole S4 in the newly discovered Bazina maar near Liba. Supplementary borehole P1 is being prepared in the Neualbenreuth maar for paleoclimate and biological research. At each of these sites, a borehole broadband seismometer will be installed, and sites S1, S2 and S3 will also host a 3-D seismic array composed of a vertical geophone chain and surface seismic array. Seismic instrumenting has been completed in the S1 borehole and is in preparation in the remaining four monitoring boreholes. The continuous fluid monitoring site of Hartousov includes three boreholes, F1, F2 and F3, and a pilot monitoring phase is underway. The laboratory also enables one to analyze microbial activity at CO2 mofettes and maar structures in the context of changes in habitats. The drillings into the maar volcanoes contribute to a better understanding of the Quaternary paleoclimate and volcanic activity. Y1 - 2022 U6 - https://doi.org/10.5194/sd-31-31-2022 SN - 1816-8957 SN - 1816-3459 VL - 31 SP - 31 EP - 49 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Esfahani, Reza Dokht Dolatabadi A1 - Vogel, Kristin A1 - Cotton, Fabrice A1 - Ohrnberger, Matthias A1 - Scherbaum, Frank A1 - Kriegerowski, Marius T1 - Exploring the dimensionality of ground-motion data by applying autoencoder techniques JF - Bulletin of the Seismological Society of America : BSSA N2 - In this article, we address the question of how observed ground-motion data can most effectively be modeled for engineering seismological purposes. Toward this goal, we use a data-driven method, based on a deep-learning autoencoder with a variable number of nodes in the bottleneck layer, to determine how many parameters are needed to reconstruct synthetic and observed ground-motion data in terms of their median values and scatter. The reconstruction error as a function of the number of nodes in the bottleneck is used as an indicator of the underlying dimensionality of ground-motion data, that is, the minimum number of predictor variables needed in a ground-motion model. Two synthetic and one observed datasets are studied to prove the performance of the proposed method. We find that mapping ground-motion data to a 2D manifold primarily captures magnitude and distance information and is suited for an approximate data reconstruction. The data reconstruction improves with an increasing number of bottleneck nodes of up to three and four, but it saturates if more nodes are added to the bottleneck. Y1 - 2021 U6 - https://doi.org/10.1785/0120200285 SN - 0037-1106 SN - 1943-3573 VL - 111 IS - 3 SP - 1563 EP - 1576 PB - Seismological Society of America CY - El Cerito, Calif. ER - TY - JOUR A1 - Zali, Zahra A1 - Ohrnberger, Matthias A1 - Scherbaum, Frank A1 - Cotton, Fabrice A1 - Eibl, Eva P. S. T1 - Volcanic tremor extraction and earthquake detection using music information retrieval algorithms JF - Seismological research letters N2 - Volcanic tremor signals are usually observed before or during volcanic eruptions and must be monitored to evaluate the volcanic activity. A challenge in studying seismic signals of volcanic origin is the coexistence of transient signal swarms and long-lasting volcanic tremor signals. Separating transient events from volcanic tremors can, therefore, contrib-ute to improving upon our understanding of the underlying physical processes. Exploiting the idea of harmonic-percussive separation in musical signal processing, we develop a method to extract the harmonic volcanic tremor signals and to detect tran-sient events from seismic recordings. Based on the similarity properties of spectrogram frames in the time-frequency domain, we decompose the signal into two separate spec-trograms representing repeating (harmonic) and nonrepeating (transient) patterns, which correspond to volcanic tremor signals and earthquake signals, respectively. We reconstruct the harmonic tremor signal in the time domain from the complex spectrogram of the repeating pattern by only considering the phase components for the frequency range in which the tremor amplitude spectrum is significantly contribut-ing to the energy of the signal. The reconstructed signal is, therefore, clean tremor signal without transient events. Furthermore, we derive a characteristic function suitable for the detection of tran-sient events (e.g., earthquakes) by integrating amplitudes of the nonrepeating spectro-gram over frequency at each time frame. Considering transient events like earthquakes, 78% of the events are detected for signal-to-noise ratio = 0.1 in our semisynthetic tests. In addition, we compared the number of detected earthquakes using our method for one month of continuous data recorded during the Holuhraun 2014-2015 eruption in Iceland with the bulletin presented in Agustsdottir et al. (2019). Our single station event detection algorithm identified 84% of the bulletin events. Moreover, we detected a total of 12,619 events, which is more than twice the number of the bulletin events. KW - algorithms KW - body waves KW - earthquakes KW - elastic waves KW - eruptions KW - geologic hazards KW - natural hazards KW - P-waves KW - S-waves KW - seismic waves KW - signal-to-noise ratio KW - swarms KW - volcanic earthquakes Y1 - 2021 U6 - https://doi.org/10.1785/0220210016 SN - 0895-0695 SN - 1938-2057 VL - 92 IS - 6 SP - 3668 EP - 3681 PB - Seismological Society of America CY - Boulder, Colo. ER - TY - JOUR A1 - Forbriger, Thomas A1 - Gao, Lingli A1 - Malischewsky, Peter A1 - Ohrnberger, Matthias A1 - Pan, Yudi T1 - A single Rayleigh mode may exist with multiple values of phase-velocity at one frequency JF - Geophysical journal international N2 - Other than commonly assumed in seismology, the phase velocity of Rayleigh waves is not necessarily a single-valued function of frequency. In fact, a single Rayleigh mode can exist with three different values of phase velocity at one frequency. We demonstrate this for the first higher mode on a realistic shallow seismic structure of a homogeneous layer of unconsolidated sediments on top of a half-space of solid rock (LOH). In the case of LOH a significant contrast to the half-space is required to produce the phenomenon. In a simpler structure of a homogeneous layer with fixed (rigid) bottom (LFB) the phenomenon exists for values of Poisson's ratio between 0.19 and 0.5 and is most pronounced for P-wave velocity being three times S-wave velocity (Poisson's ratio of 0.4375). A pavement-like structure (PAV) of two layers on top of a half-space produces the multivaluedness for the fundamental mode. Programs for the computation of synthetic dispersion curves are prone to trouble in such cases. Many of them use mode-follower algorithms which loose track of the dispersion curve and miss the multivalued section. We show results for well established programs. Their inability to properly handle these cases might be one reason why the phenomenon of multivaluedness went unnoticed in seismological Rayleigh wave research for so long. For the very same reason methods of dispersion analysis must fail if they imply wave number k(l)(omega) for the lth Rayleigh mode to be a single-valued function of frequency.. This applies in particular to deconvolution methods like phase-matched filters. We demonstrate that a slant-stack analysis fails in the multivalued section, while a Fourier-Bessel transformation captures the complete Rayleigh-wave signal. Waves of finite bandwidth in the multivalued section propagate with positive group-velocity and negative phase-velocity. Their eigenfunctions appear conventional and contain no conspicuous feature. KW - Surface waves and free oscillations KW - Theoretical seismology KW - Wave KW - propagation Y1 - 2020 U6 - https://doi.org/10.1093/gji/ggaa123 SN - 0956-540X SN - 1365-246X VL - 222 IS - 1 SP - 582 EP - 594 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Zali, Zahra A1 - Rein, Teresa A1 - Krüger, Frank A1 - Ohrnberger, Matthias A1 - Scherbaum, Frank T1 - Ocean bottom seismometer (OBS) noise reduction from horizontal and vertical components using harmonic–percussive separation algorithms JF - Solid earth N2 - Records from ocean bottom seismometers (OBSs) are highly contaminated by noise, which is much stronger compared to data from most land stations, especially on the horizontal components. As a consequence, the high energy of the oceanic noise at frequencies below 1 Hz considerably complicates the analysis of the teleseismic earthquake signals recorded by OBSs. Previous studies suggested different approaches to remove low-frequency noises from OBS recordings but mainly focused on the vertical component. The records of horizontal components, which are crucial for the application of many methods in passive seismological analysis of body and surface waves, could not be much improved in the teleseismic frequency band. Here we introduce a noise reduction method, which is derived from the harmonic–percussive separation algorithms used in Zali et al. (2021), in order to separate long-lasting narrowband signals from broadband transients in the OBS signal. This leads to significant noise reduction of OBS records on both the vertical and horizontal components and increases the earthquake signal-to-noise ratio (SNR) without distortion of the broadband earthquake waveforms. This is demonstrated through tests with synthetic data. Both SNR and cross-correlation coefficients showed significant improvements for different realistic noise realizations. The application of denoised signals in surface wave analysis and receiver functions is discussed through tests with synthetic and real data. Y1 - 2023 U6 - https://doi.org/10.5194/se-14-181-2023 SN - 1869-9529 VL - 14 IS - 2 SP - 181 EP - 195 PB - Coepernicus Publ. CY - Göttingen ER - TY - JOUR A1 - Steinberg, Andreas A1 - Vasyura-Bathke, Hannes A1 - Gaebler, Peter Jost A1 - Ohrnberger, Matthias A1 - Ceranna, Lars T1 - Estimation of seismic moment tensors using variational inference machine learning JF - Journal of geophysical research : Solid earth N2 - We present an approach for rapidly estimating full moment tensors of earthquakes and their parameter uncertainties based on short time windows of recorded seismic waveform data by considering deep learning of Bayesian Neural Networks (BNNs). The individual neural networks are trained on synthetic seismic waveform data and corresponding known earthquake moment-tensor parameters. A monitoring volume has been predefined to form a three-dimensional grid of locations and to train a BNN for each grid point. Variational inference on several of these networks allows us to consider several sources of error and how they affect the estimated full moment-tensor parameters and their uncertainties. In particular, we demonstrate how estimated parameter distributions are affected by uncertainties in the earthquake centroid location in space and time as well as in the assumed Earth structure model. We apply our approach as a proof of concept on seismic waveform recordings of aftershocks of the Ridgecrest 2019 earthquake with moment magnitudes ranging from Mw 2.7 to Mw 5.5. Overall, good agreement has been achieved between inferred parameter ensembles and independently estimated parameters using classical methods. Our developed approach is fast and robust, and therefore, suitable for down-stream analyses that need rapid estimates of the source mechanism for a large number of earthquakes. KW - seismology KW - machine learning KW - earthquake source KW - moment tensor KW - full KW - waveform Y1 - 2021 U6 - https://doi.org/10.1029/2021JB022685 SN - 2169-9313 SN - 2169-9356 VL - 126 IS - 10 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Hammer, Conny A1 - Fäh, Donat A1 - Ohrnberger, Matthias T1 - Automatic detection of wet-snow avalanche seismic signals JF - Natural hazards : journal of the International Society for the Prevention and Mitigation of Natural Hazards N2 - Avalanche activity is an important factor when estimating the regional avalanche danger. Moreover, a complete and detailed picture of avalanche activity is needed to understand the processes that lead to natural avalanche release. Currently, information on avalanche activity is mainly obtained through visual observations. However, this involves large uncertainties in the number and release times, influencing the subsequent analysis. Therefore, alternative methods for the remote detection of snow avalanches in particular in non-observed areas are highly desirable. In this study, we use the excited ground vibration to identify avalanches automatically. The specific seismic signature of avalanches facilitates the objective detection by a recently developed classification procedure. A probabilistic description of the signals, called hidden Markov models, allows the robust identification of corresponding signals in the continuous data stream. The procedure is based upon learning a general background model from continuous seismic data. Then, a single reference waveform is used to update an event-specific classifier. Thus, a minimum amount of training data is required by constructing such a classifier on the fly. In this study, we processed five days of continuous data recorded in the Swiss Alps during the avalanche winter 1999. With the restriction of testing large wet-snow avalanches only, the presented approach achieved very convincing results. We successfully detect avalanches over a large volume and distance range. Ninety-two percentage of all detections (43 out of 47) could be confirmed as avalanche events; only four false alarms are reported. We see a clear dependence of recognition capability on run-out distance and source-receiver distance of the observed events: Avalanches are detectable up to a source-receiver distance of eight times the avalanche length. Implications for analyzing a more comprehensive data set (smaller events and different flow regimes) are discussed in detail. KW - Snow avalanche recognition KW - Automatic detection KW - Avalanche forecasting KW - Hidden Markov model Y1 - 2016 U6 - https://doi.org/10.1007/s11069-016-2707-0 SN - 0921-030X SN - 1573-0840 VL - 86 SP - 601 EP - 618 PB - Springer CY - New York ER - TY - JOUR A1 - Foti, Sebastiano A1 - Hollender, Fabrice A1 - Garofalo, Flora A1 - Albarello, Dario A1 - Asten, Michael A1 - Bard, Pierre-Yves A1 - Comina, Cesare A1 - Cornou, Cecile A1 - Cox, Brady A1 - Di Giulio, Giuseppe A1 - Forbriger, Thomas A1 - Hayashi, Koichi A1 - Lunedei, Enrico A1 - Martin, Antony A1 - Mercerat, Diego A1 - Ohrnberger, Matthias A1 - Poggi, Valerio A1 - Renalier, Florence A1 - Sicilia, Deborah A1 - Socco, Valentina T1 - Guidelines for the good practice of surface wave analysis BT - a product of the InterPACIFIC project JF - Bulletin of earthquake engineering : official publication of the European Association for Earthquake Engineering N2 - Surface wave methods gained in the past decades a primary role in many seismic projects. Specifically, they are often used to retrieve a 1D shear wave velocity model or to estimate the V-s,V-30 at a site. The complexity of the interpretation process and the variety of possible approaches to surface wave analysis make it very hard to set a fixed standard to assure quality and reliability of the results. The present guidelines provide practical information on the acquisition and analysis of surface wave data by giving some basic principles and specific suggestions related to the most common situations. They are primarily targeted to non-expert users approaching surface wave testing, but can be useful to specialists in the field as a general reference. The guidelines are based on the experience gained within the InterPACIFIC project and on the expertise of the participants in acquisition and analysis of surface wave data. KW - Rayleigh waves KW - MASW KW - Ambient vibration analysis KW - Site characterization KW - Shear wave velocity KW - V-S,V-30 Y1 - 2017 U6 - https://doi.org/10.1007/s10518-017-0206-7 SN - 1570-761X SN - 1573-1456 VL - 16 IS - 6 SP - 2367 EP - 2420 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Wathelet, Marc A1 - Guillier, B. A1 - Roux, P. A1 - Cornou, C. A1 - Ohrnberger, Matthias T1 - Rayleigh wave three-component beamforming BT - signed ellipticity assessment from high-resolution frequency-wavenumber processing of ambient vibration arrays JF - Geophysical journal international N2 - The variation of Rayleigh ellipticity versus frequency is gaining popularity in site characterization. It becomes a necessary observable to complement dispersion curves when inverting shear wave velocity profiles. Various methods have been proposed so far to extract polarization from ambient vibrations recorded on a single three-component station or with an array of three-component sensors. If only absolute values were recovered 10 yr ago, new array-based techniques were recently proposed with enhanced efficiencies providing also the ellipticity sign. With array processing, higher-order modes are often detected even in the ellipticity domain. We suggest to explore the properties of a high-resolution beamforming where radial and vertical components are explicitly included. If N is the number of three-component sensors, 2N x 2N cross-spectral density matrices are calculated for all presumed directions of propagation. They are built with N radial and N vertical channels. As a first approach, steering vectors are designed to fit with Rayleigh wave properties: the phase shift between radial and vertical components is either -Pi/2 or Pi/2. We show that neglecting the ellipticity tilt due to attenuation has only minor effects on the results. Additionally, we prove analytically that it is possible to retrieve the ellipticity value from the usual maximization of the high-resolution beam power. The method is tested on synthetic data sets and on experimental data. Both are reference sites already analysed by several authors. A detailed comparison with previous results on these cases is provided. KW - Fourier analysis KW - Time-series analysis KW - Site effects KW - Surface waves and free oscillations KW - Wave propagation Y1 - 2018 U6 - https://doi.org/10.1093/gji/ggy286 SN - 0956-540X SN - 1365-246X VL - 215 IS - 1 SP - 507 EP - 523 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Haendel, Annabel A1 - Ohrnberger, Matthias A1 - Krüger, Frank T1 - Frequency-dependent quality factors from the deconvolution of ambient noise recordings in a borehole in West Bohemia/Vogtland JF - Geophysical journal international N2 - The correct estimation of site-specific attenuation is crucial for the assessment of seismic hazard. Downhole instruments provide in this context valuable information to constrain attenuation directly from data. In this study, we apply an interferometric approach to this problem by deconvolving seismic motions recorded at depth with those recorded at the surface. In doing so, incident and surface-reflected waves can be separated. We apply this technique not only to earthquake data but also to recordings of ambient vibrations. We compute the transfer function between incident and surface-reflected waves in order to infer frequency-dependent quality factors for S waves. The method is applied to a 87m deep borehole sensor and a colocated surface instrument situated at a hard-rock site in West Bohemia/Vogtland, Germany. We show that the described method provides comparable attenuation estimates using either earthquake data or ambient noise for frequencies between 5 and 15 Hz. Moreover, a single hour of noise recordings seems to be sufficient to yield stable deconvolution traces and quality factors, thus, offering a fast and easy way to derive attenuation estimates from borehole recordings even in low- to mid-seismicity regions. KW - Downholemethods KW - Seismic attenuation KW - Seismic interferometry KW - Seismic noise Y1 - 2018 U6 - https://doi.org/10.1093/gji/ggy422 SN - 0956-540X SN - 1365-246X VL - 216 IS - 1 SP - 251 EP - 260 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Kriegerowski, Marius A1 - Petersen, Gesa Maria A1 - Vasyura-Bathke, Hannes A1 - Ohrnberger, Matthias T1 - A Deep Convolutional Neural Network for Localization of Clustered Earthquakes Based on Multistation Full Waveforms JF - Seismological research letters N2 - Earthquake localization is both a necessity within the field of seismology, and a prerequisite for further analysis such as source studies and hazard assessment. Traditional localization methods often rely on manually picked phases. We present an alternative approach using deep learning that once trained can predict hypocenter locations efficiently. In seismology, neural networks have typically been trained with either single-station records or based on features that have been extracted previously from the waveforms. We use three-component full-waveform records of multiple stations directly. This means no information is lost during preprocessing and preparation of the data does not require expert knowledge. The first convolutional layer of our deep convolutional neural network (CNN) becomes sensitive to features that characterize the waveforms it is trained on. We show that this layer can therefore additionally be used as an event detector. As a test case, we trained our CNN using more than 2000 earthquake swarm events from West Bohemia, recorded by nine local three-component stations. The CNN successfully located 908 validation events with standard deviations of 56.4 m in east-west, 123.8 m in north-south, and 136.3 m in vertical direction compared to a double-difference relocated reference catalog. The detector is sensitive to events with magnitudes down to M-L = -0.8 with 3.5% false positive detections. Y1 - 2018 U6 - https://doi.org/10.1785/0220180320 SN - 0895-0695 SN - 1938-2057 VL - 90 IS - 2 SP - 510 EP - 516 PB - Seismological Society of America CY - Albany ER - TY - JOUR A1 - Lontsi, Agostiny Marrios A1 - Garcia-Jerez, Antonio A1 - Camilo Molina-Villegas, Juan A1 - Jose Sanchez-Sesma, Francisco A1 - Molkenthin, Christian A1 - Ohrnberger, Matthias A1 - Krüger, Frank A1 - Wang, Rongjiang A1 - Fah, Donat T1 - A generalized theory for full microtremor horizontal-to-vertical [H/V(z,f)] spectral ratio interpretation in offshore and onshore environments JF - Geophysical journal international N2 - Advances in the field of seismic interferometry have provided a basic theoretical interpretation to the full spectrum of the microtremor horizontal-to-vertical spectral ratio [H/V(f)]. The interpretation has been applied to ambient seismic noise data recorded both at the surface and at depth. The new algorithm, based on the diffuse wavefield assumption, has been used in inversion schemes to estimate seismic wave velocity profiles that are useful input information for engineering and exploration seismology both for earthquake hazard estimation and to characterize surficial sediments. However, until now, the developed algorithms are only suitable for on land environments with no offshore consideration. Here, the microtremor H/V(z, f) modelling is extended for applications to marine sedimentary environments for a 1-D layered medium. The layer propagator matrix formulation is used for the computation of the required Green’s functions. Therefore, in the presence of a water layer on top, the propagator matrix for the uppermost layer is defined to account for the properties of the water column. As an application example we analyse eight simple canonical layered earth models. Frequencies ranging from 0.2 to 50 Hz are considered as they cover a broad wavelength interval and aid in practice to investigate subsurface structures in the depth range from a few meters to a few hundreds of meters. Results show a marginal variation of 8 per cent at most for the fundamental frequency when a water layer is present. The water layer leads to variations in H/V peak amplitude of up to 50 per cent atop the solid layers. KW - Numerical modelling KW - Earthquake hazards KW - Seismic interferometry KW - Site effects KW - Theoretical seismology KW - Wave propagation Y1 - 2019 U6 - https://doi.org/10.1093/gji/ggz223 SN - 0956-540X SN - 1365-246X VL - 218 IS - 2 SP - 1276 EP - 1297 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Garofalo, F. A1 - Foti, S. A1 - Hollender, F. A1 - Bard, Pierre-Yves A1 - Cornou, C. A1 - Cox, B. R. A1 - Ohrnberger, Matthias A1 - Sicilia, D. A1 - Asten, M. A1 - Di Giulio, G. A1 - Forbriger, T. A1 - Guillier, B. A1 - Hayashi, K. A1 - Martin, A. A1 - Matsushima, Satoru A1 - Mercerat, D. A1 - Poggi, V. A1 - Yamanaka, H. T1 - InterPACIFIC project: Comparison of invasive and non-invasive methods for seismic site characterization. Part I: Intra-comparison of surface wave methods JF - Soil Dynamics and Earthquake Engineering N2 - The main scope of the InterPACIFIC (Intercomparison of methods for site parameter and velocity profile characterization) project is to assess the reliability of in-hole and surface-wave methods, used for estimating shear wave velocity. Three test-sites with different subsurface conditions were chosen: a soft soil, a stiff soil and a rock outcrop. This paper reports the surface-wave methods results. Specifically 14 teams of expert users analysed the same experimental surface-wave datasets, consisting of both passive and active data. Each team adopted their own strategy to retrieve the dispersion curve and the shear-wave velocity profile at each site. Despite different approaches, the dispersion curves are quite in agreement with each other. Conversely, the shear-wave velocity profiles show a certain variability that increases in correspondence of major stratigraphic interfaces. This larger variability is mainly due to non-uniqueness of the solution and lateral variability. As expected, the observed variability in V-s,V-30 estimatesis small, as solution non-uniqueness plays a limited role. (C) 2015 Elsevier Ltd. All rights reserved. KW - Surface-wave methods KW - Dispersion curve KW - Inversion KW - V-s,V-30 KW - Site characterization KW - MASW KW - Microtremors KW - Rayleigh waves KW - Geophysical methods Y1 - 2016 U6 - https://doi.org/10.1016/j.soildyn.2015.12.010 SN - 0267-7261 SN - 1879-341X VL - 82 SP - 222 EP - 240 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Lontsi, Agostiny Marrios A1 - Ohrnberger, Matthias A1 - Krüger, Frank T1 - Shear wave velocity profile estimation by integrated analysis of active and passive seismic data from small aperture arrays JF - Journal of applied geophysics N2 - We present an integrated approach for deriving the 1D shear wave velocity (Vs) information at few tens to hundreds of meters down to the first strong impedance contrast in typical sedimentary environments. We use multiple small aperture seismic arrays in 1D and 2D configuration to record active and passive seismic surface wave data at two selected geotechnical sites in Germany (Horstwalde & Lobnitz). Standard methods for data processing include the Multichannel Analysis of Surface Waves (MASW) method that exploits the high frequency content in the active data and the sliding window frequency-wavenumber (f-k) as well as the spatial autocorrelation (SPAC) methods that exploit the low frequency content in passive seismic data. Applied individually, each of the passive methods might be influenced by any source directivity in the noise wavefield. The advantages of active shot data (known source location) and passive microtremor (low frequency content) recording may be combined using a correlation based approach applied to the passive data in the so called Interferometric Multichannel Analysis of Surface Waves (IMASW). In this study, we apply those methods to jointly determine and interpret the dispersion characteristics of surface waves recorded at Horstwalde and Lobnitz. The reliability of the dispersion curves is controlled by applying strict limits on the interpretable range of wavelengths in the analysis and further avoiding potentially biased phase velocity estimates from the passive f-k method by comparing to those derived from the SPatial AutoCorrelation method (SPAC). From our investigation at these two sites, the joint analysis as proposed allows mode extraction in a wide frequency range (similar to 0.6-35 Hz at Horstwalde and similar to 1.5-25 Hz at Lobnitz) and consequently improves the Vs profile inversion. To obtain the shear wave velocity profiles, we make use of a global inversion approach based on the neighborhood algorithm to invert the interpreted branches of the dispersion curves. Within the uncertainty given by the apparent spread of forward models we find that besides a well defined sediment velocity range also a reasonable minimum estimate of bedrock depth and bedrock velocity can be achieved. The Vs estimate for the best model in Horstwalde ranges from similar to 190 m/s at the surface up to similar to 390 m/s in the bottom of the soft sediment column. The bedrock starts earliest around 200 m depth and bedrock velocities are higher than 1000 m/s. In Lobnitz, we observe slightly lower velocities for the sediments (similar to 165-375 m/s for the best model) and a minimum thickness of 75 m. (C) 2016 Elsevier B.V. All rights reserved. KW - Active seismic KW - Passive seismic KW - Virtual active seismic KW - Dispersion curves KW - Inversion KW - V-s profiles Y1 - 2016 U6 - https://doi.org/10.1016/j.jappgeo.2016.03.034 SN - 0926-9851 SN - 1879-1859 VL - 130 SP - 37 EP - 52 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Tran Thanh Tuan, A1 - Pham Chi Vinh, A1 - Ohrnberger, Matthias A1 - Malischewsky, Peter A1 - Aoudia, Abdelkrim T1 - An Improved Formula of Fundamental Resonance Frequency of a Layered Half-Space Model Used in H/V Ratio Technique JF - Pure and applied geophysics N2 - The resonance frequency of the transmission response in layered half-space model is important in the study of site effect because it is the frequency where the shake-ability of the ground is enhanced significantly. In practice, it is often determined by the H/V ratio technique in which the peak frequency of recorded H/V spectral ratio is interpreted as the resonance frequency. Despite of its importance, there has not been any formula of the resonance frequency of the layered half-space structure. In this paper, a simple approximate formula of the fundamental resonance frequency is presented after an exact formula in explicit form of the response function of vertically SH incident wave is obtained. The formula is in similar form with the one used in H/V ratio technique but it reflects several major effects of the model to the resonance frequency such as the arrangement of layers, the impedance contrast between layers and the half-space. Therefore, it could be considered as an improved formula used in H/V ratio technique. The formula also reflects the consistency between two approaches of the H/V ratio technique based on SH body waves or Rayleigh surface waves on the peak frequency under high impedance contrast condition. This formula is in explicit form and, therefore, may be used in the direct and inverse problem efficiently. A numerical illustration of the improved formula for an actual layered half-space model already investigated by H/V ratio technique is presented to demonstrate its new features and its improvement to the currently used formula. KW - Response function KW - H/V ratio technique KW - Orthotropy KW - SH waves KW - Quarter-wavelength principle Y1 - 2016 U6 - https://doi.org/10.1007/s00024-016-1313-0 SN - 0033-4553 SN - 1420-9136 VL - 173 SP - 2803 EP - 2812 PB - Springer CY - Basel ER - TY - JOUR A1 - Händel, Annabel A1 - Ohrnberger, Matthias A1 - Krüger, Frank T1 - Extracting near-surface Q(L) between 1-4 Hz from higher-order noise correlations in the Euroseistest area, Greece JF - Geophysical journal international N2 - Knowledge of the quality factor of near-surface materials is of fundamental interest in various applications. Attenuation can be very strong close to the surface and thus needs to be properly assessed. In recent years, several researchers have studied the retrieval of attenuation coefficients from the cross correlation of ambient seismic noise. Yet, the determination of exact amplitude information from noise-correlation functions is, in contrast to the extraction of traveltimes, not trivial. Most of the studies estimated attenuation coefficients on the regional scale and within the microseism band. In this paper, we investigate the possibility to derive attenuation coefficients from seismic noise at much shallower depths and higher frequencies (> 1 Hz). The Euroseistest area in northern Greece offers ideal conditions to study quality factor retrieval from ambient noise for different rock types. Correlations are computed between the stations of a small scale array experiment (station spacings < 2 km) that was carried out in the Euroseistest area in 2011. We employ the correlation of the coda of the correlation (C-3) method instead of simple cross correlations to mitigate the effect of uneven noise source distributions on the correlation amplitude. Transient removal and temporal flattening are applied instead of 1-bit normalization in order to retain relative amplitudes. The C-3 method leads to improved correlation results (higher signal-to-noise ratio and improved time symmetry) compared to simple cross correlations. The C-3 functions are rotated from the ZNE to the ZRT system and we focus on Love wave arrivals on the transverse component and on Love wave quality factors Q(L). The analysis is performed for selected stations being either situated on soft soil or on weathered rock. Phase slowness is extracted using a slant-stack method. Attenuation parameters are inferred by inspecting the relative amplitude decay of Love waves with increasing interstation distance. We observe that the attenuation coefficient gamma and Q(L) can be reliably extracted for stations situated on soft soil whereas the derivation of attenuation parameters is more problematic for stations that are located on weathered rock. The results are in acceptable conformance with theoretical Love wave attenuation curves that were computed using 1-D shear wave velocity and quality factor profiles from the Euroseistest area. KW - Interferometry KW - Coda waves KW - Seismic attenuation Y1 - 2016 U6 - https://doi.org/10.1093/gji/ggw295 SN - 0956-540X SN - 1365-246X VL - 207 SP - 655 EP - 666 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Lontsi, Agostiny Marrios A1 - Ohrnberger, Matthias A1 - Krüger, Frank A1 - Sánchez-Sesma, Francisco José T1 - Combining surface-wave phase-velocity dispersion curves and full microtremor horizontal-to-vertical spectral ratio for subsurface sedimentary site characterization JF - Interpretation : a journal of subsurface characterization N2 - We compute seismic velocity profiles by a combined inversion of surface-wave phase-velocity dispersion curves together with the full spectrum of the microtremor horizontal-to-vertical (H/V) spectral ratio at two sediment-covered sites in Germany. The sediment deposits are approximately 100 m thick at the first test site and approximately 400 m thick at the second test site. We have used an extended physical model based on the diffuse wavefield assumption for the interpretation of the observed microtremor H/V spectral ratio. The extension includes the interpretation of the microtremor H/V spectral ratio observed at depth (in boreholes). This full-wavefield approach accounts for the energy contribution from the body and surface waves, and thus it allows for inverting the properties of the shallow subsurface. We have obtained the multimode phase velocity dispersion curves from an independent study, and a description of the extracted branches and their interpretation was developed. The inversion results indicate that the combined approach using seismic ambient noise and actively generated surface-wave data will improve the accuracy of the reconstructed near-surface velocity model, a key step in microzonation, geotechnical engineering, seismic statics corrections, and reservoir imaging. Y1 - 2016 U6 - https://doi.org/10.1190/INT-2016-0021.1 SN - 2324-8858 SN - 2324-8866 VL - 4 SP - SQ41 EP - SQ49 PB - Society of Exploration Geophysicists CY - Tulsa ER - TY - JOUR A1 - Kriegerowski, Marius A1 - Cesca, Simone A1 - Ohrnberger, Matthias A1 - Dahm, Torsten A1 - Krüger, Frank T1 - Event couple spectral ratio Q method for earthquake clusters BT - application to northwest Bohemia JF - Solid Earth N2 - We develop an amplitude spectral ratio method for event couples from clustered earthquakes to estimate seismic wave attenuation (Q-1) in the source volume. The method allows to study attenuation within the source region of earthquake swarms or aftershocks at depth, independent of wave path and attenuation between source region and surface station. We exploit the high-frequency slope of phase spectra using multitaper spectral estimates. The method is tested using simulated full wave-field seismograms affected by recorded noise and finite source rupture. The synthetic tests verify the approach and show that solutions are independent of focal mechanisms but also show that seismic noise may broaden the scatter of results. We apply the event couple spectral ratio method to northwest Bohemia, Czech Republic, a region characterized by the persistent occurrence of earthquake swarms in a confined source region at mid-crustal depth. Our method indicates a strong anomaly of high attenuation in the source region of the swarm with an averaged attenuation factor of Qp < 100. The application to S phases fails due to scattered P-phase energy interfering with S phases. The Qp anomaly supports the common hypothesis of highly fractured and fluid saturated rocks in the source region of the swarms in northwest Bohemia. However, high temperatures in a small volume around the swarms cannot be excluded to explain our observations. KW - west bohemia KW - attenuation tomography KW - swarm earthquakes KW - focal zone KW - parameters KW - locations KW - fault Y1 - 2019 U6 - https://doi.org/10.5194/se-10-317-2019 SN - 1869-9529 IS - 10 SP - 317 EP - 328 PB - Copernicus Publications CY - Göttingen ER -