TY - JOUR A1 - Nwosu, Ebuka Canisius A1 - Roeser, Patricia Angelika A1 - Yang, Sizhong A1 - Ganzert, Lars A1 - Dellwig, Olaf A1 - Pinkerneil, Sylvia A1 - Brauer, Achim A1 - Dittmann, Elke A1 - Wagner, Dirk A1 - Liebner, Susanne T1 - From water into sediment-tracing freshwater cyanobacteria via DNA analyses JF - Microorganisms : open access journal N2 - Sedimentary ancient DNA-based studies have been used to probe centuries of climate and environmental changes and how they affected cyanobacterial assemblages in temperate lakes. Due to cyanobacteria containing potential bloom-forming and toxin-producing taxa, their approximate reconstruction from sediments is crucial, especially in lakes lacking long-term monitoring data. To extend the resolution of sediment record interpretation, we used high-throughput sequencing, amplicon sequence variant (ASV) analysis, and quantitative PCR to compare pelagic cyanobacterial composition to that in sediment traps (collected monthly) and surface sediments in Lake Tiefer See. Cyanobacterial composition, species richness, and evenness was not significantly different among the pelagic depths, sediment traps and surface sediments (p > 0.05), indicating that the cyanobacteria in the sediments reflected the cyanobacterial assemblage in the water column. However, total cyanobacterial abundances (qPCR) decreased from the metalimnion down the water column. The aggregate-forming (Aphanizomenon) and colony-forming taxa (Snowella) showed pronounced sedimentation. In contrast, Planktothrix was only very poorly represented in sediment traps (meta- and hypolimnion) and surface sediments, despite its highest relative abundance at the thermocline (10 m water depth) during periods of lake stratification (May-October). We conclude that this skewed representation in taxonomic abundances reflects taphonomic processes, which should be considered in future DNA-based paleolimnological investigations. KW - Aphanizomenon KW - Planktothrix KW - Snowella KW - cyanobacteria sedimentation KW - lake monitoring KW - sedimentary ancient DNA KW - sediment traps KW - environmental reconstruction Y1 - 2021 U6 - https://doi.org/10.3390/microorganisms9081778 SN - 2076-2607 VL - 9 IS - 8 PB - MDPI CY - Basel ER - TY - THES A1 - Sharma, Shubham T1 - Integrated approaches to earthquake forecasting T1 - Integrierte Ansätze zur Vorhersage von Erdbeben BT - insights from Coulomb stress, seismotectonics, and aftershock sequences BT - Erkenntnisse aus Coulomb-Stress, Seismotektonik und Nachbebenfolgen N2 - A comprehensive study on seismic hazard and earthquake triggering is crucial for effective mitigation of earthquake risks. The destructive nature of earthquakes motivates researchers to work on forecasting despite the apparent randomness of the earthquake occurrences. Understanding their underlying mechanisms and patterns is vital, given their potential for widespread devastation and loss of life. This thesis combines methodologies, including Coulomb stress calculations and aftershock analysis, to shed light on earthquake complexities, ultimately enhancing seismic hazard assessment. The Coulomb failure stress (CFS) criterion is widely used to predict the spatial distributions of aftershocks following large earthquakes. However, uncertainties associated with CFS calculations arise from non-unique slip inversions and unknown fault networks, particularly due to the choice of the assumed aftershocks (receiver) mechanisms. Recent studies have proposed alternative stress quantities and deep neural network approaches as superior to CFS with predefined receiver mechanisms. To challenge these propositions, I utilized 289 slip inversions from the SRCMOD database to calculate more realistic CFS values for a layered-half space and variable receiver mechanisms. The analysis also investigates the impact of magnitude cutoff, grid size variation, and aftershock duration on the ranking of stress metrics using receiver operating characteristic (ROC) analysis. Results reveal the performance of stress metrics significantly improves after accounting for receiver variability and for larger aftershocks and shorter time periods, without altering the relative ranking of the different stress metrics. To corroborate Coulomb stress calculations with the findings of earthquake source studies in more detail, I studied the source properties of the 2005 Kashmir earthquake and its aftershocks, aiming to unravel the seismotectonics of the NW Himalayan syntaxis. I simultaneously relocated the mainshock and its largest aftershocks using phase data, followed by a comprehensive analysis of Coulomb stress changes on the aftershock planes. By computing the Coulomb failure stress changes on the aftershock faults, I found that all large aftershocks lie in regions of positive stress change, indicating triggering by either co-seismic or post-seismic slip on the mainshock fault. Finally, I investigated the relationship between mainshock-induced stress changes and associated seismicity parameters, in particular those of the frequency-magnitude (Gutenberg-Richter) distribution and the temporal aftershock decay (Omori-Utsu law). For that purpose, I used my global data set of 127 mainshock-aftershock sequences with the calculated Coulomb Stress (ΔCFS) and the alternative receiver-independent stress metrics in the vicinity of the mainshocks and analyzed the aftershocks properties depend on the stress values. Surprisingly, the results show a clear positive correlation between the Gutenberg-Richter b-value and induced stress, contrary to expectations from laboratory experiments. This observation highlights the significance of structural heterogeneity and strength variations in seismicity patterns. Furthermore, the study demonstrates that aftershock productivity increases nonlinearly with stress, while the Omori-Utsu parameters c and p systematically decrease with increasing stress changes. These partly unexpected findings have significant implications for future estimations of aftershock hazard. The findings in this thesis provides valuable insights into earthquake triggering mechanisms by examining the relationship between stress changes and aftershock occurrence. The results contribute to improved understanding of earthquake behavior and can aid in the development of more accurate probabilistic-seismic hazard forecasts and risk reduction strategies. N2 - Ein umfassendes Verständnis der seismischen Gefahr und Erdbebenauslösung ist wichtig für eine Minderung von Erdbebenrisiken. Die zerstörerische Natur von Erdbeben motiviert Forscher dazu, trotz der scheinbaren Zufälligkeit der Erdbebenereignisse an Vorhersagen zu arbeiten. Das Verständnis der den Beben zugrunde liegenden Mechanismen und Muster ist angesichts ihres Potenzials für weitreichende Verwüstung und den Verlust von Menschenleben von entscheidender Bedeutung. Diese Arbeit kombiniert Methoden, einschließlich der Berechnung der Coulombschen Spannung und der Analyse von Nachbeben, um die Komplexitäten von Erdbeben besser zu verstehen und letztendlich die Bewertung der seismischen Gefahr zu verbessern. Das Coulomb Spannungskriterium (CFS) wird oft verwendet, um die räumliche Verteilung von Nachbeben nach großen Erdbeben vorherzusagen. Jedoch ergeben sich Unsicherheiten bei der Berechnung von CFS aus nicht eindeutigen slip-inversion und der unbekannten Störungsnetzwerken, insbesondere aufgrund der Unsicherheit bezüglich der Nachbebenmechanismen (Empfänger). Neueste Studien deuten darauf hin dass alternative Spannungsgrößen und Deep-Learning-Ansätze gegenüber CFS mit vordefinierten Empfängermechanismen. Um diese Ergebnisse zu hinterfragen, habe ich 289 Slip-inversion uberlegensind aus der SRCMOD-Datenbank verwendet, um realistischere CFS-Werte für einen geschichteten Halbraum und variable Empfängermechanismen zu berechnen. Dabei habe ich auch den Einfluss von Magnitudenschwellenwerten, Gittergrößenvariationen und der Nachbeben-Dauer auf die vorhersagemöglichkeiten der Spannungsmetriken unter Verwendung der ROC-Analyse (Receiver Operating Characteristic) untersucht. Die Ergebnisse zeigen, dass die berudzsidtizung von variablen Empfangermechanism und größere Nachbeben und kürzere Zeiträume die vorhersagekraft steigern, wobei die relative Rangfolge der verschiedenen Spannungsmetriken nicht geändert wird. Um die Coulomb Spannungsberechnungen genauer mit den Ergebnissen von Erdbebenstudien abzugleichen, habe ich die Quelleneigenschaften des Erdbebens von Kaschmir aus dem Jahr 2005 und seiner Nachbeben mit dem ziel, die Seismotektonik des NW-Himalaya Syntaxis zu entschlüsseln, detailliert untersucht. Ich habe gleichzeitig das Hauptbeben und seine größten Nachbeben unter Verwendung von seismischen Phaseneinsetzen relokalisiert und anschließend eine umfassende Analyse der Coulomb Spannungsänderungen auf den Bruchflächen der Nachbeben durchgeführt. Durch die Berechnung der Coulomb Spannungsänderungen an den während der Nachbeben aktivierten Störungen konnte ich herausfinden, dass alle großen Nachbeben in Regionen mit positiven Spannungsänderungen liegen, was auf eine Auslösung durch entweder ko-seismische oder post-seismische Verschiebungen des Hauptbebens hinweist. Schließlich habe ich die Beziehung zwischen den durch Hauptbeben verursachten Spannungsänderungen und den damit verbundenen seismischen Parametern untersucht, insbesondere denen der Häufigkeits-Magnituden (Gutenberg-Richter) Verteilung und des zeitlichen Nachbebenabklingens (Omori-Utsu-Gesetz). Zu diesem Zweck habe ich meinen globalen Datensatz von 127 Hauptbeben-Nachbeben-Sequenzen mit den in der Umgebung der Hauptbeben berechneten Coulomb Spannungen ($\Delta$CFS) zusammen mit den alternativen, empfänger-unabhängigen Spannungsmetriken, verwendet und die Eigenschaften in Abhängigkeit der Spannungswerte analysiert. Überraschenderweise zeigen die Ergebnisse eine klar positive Korrelation zwischen dem $b$-Wert der Gutenberg-Richter-Verteilung und der induzierten Spannung, was im Kontrast zu den Erwartungen aus Laborexperimenten steht. Diese Beobachtung unterstreicht die Bedeutung struktureller Heterogenitäten und Festigkeitsvariationen in seismischen Mustern. Darüber hinaus zeigt die Studie, dass die Anzahl von Nachbeben nichtlinear mit der Spannung zunimmt, während die Omori-Utsu-Parameter $c$ und $p$ systematisch mit zunehmenden Spannungsänderungen abnehmen. Diese teilweise unerwarteten Ergebnisse haben bedeutende Auswirkungen auf zukünftige Abschätzungen der Nachbebengefahr. Die Ergebnisse dieser Arbeit liefern wertvolle Einblicke in die Mechanismen der Erdbebenauslösung, indem sie die Beziehung zwischen Spannungsänderungen und dem Auftreten von Nachbeben untersuchen. Die Ergebnisse tragen zu einem besseren Verständnis des Verhaltens von Erdbeben bei und können bei der Entwicklung genauerer probabilistischer, seismischer Gefahreneinschätzungen und Risikominderungsstrategien helfen. KW - earthquake KW - forecasting KW - hazards KW - seismology KW - Erdbeben KW - Vorhersage KW - Gefahren KW - Seismologie Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-636125 ER - TY - JOUR A1 - Peña, Carlos A1 - Metzger, Sabrina A1 - Heidbach, Oliver A1 - Bedford, Jonathan A1 - Bookhagen, Bodo A1 - Moreno, Marcos A1 - Oncken, Onno A1 - Cotton, Fabrice T1 - Role of poroelasticity during the early postseismic deformation of the 2010 Maule megathrust earthquake JF - Geophysical research letters N2 - Megathrust earthquakes impose changes of differential stress and pore pressure in the lithosphere-asthenosphere system that are transiently relaxed during the postseismic period primarily due to afterslip, viscoelastic and poroelastic processes. Especially during the early postseismic phase, however, the relative contribution of these processes to the observed surface deformation is unclear. To investigate this, we use geodetic data collected in the first 48 days following the 2010 Maule earthquake and a poro-viscoelastic forward model combined with an afterslip inversion. This model approach fits the geodetic data 14% better than a pure elastic model. Particularly near the region of maximum coseismic slip, the predicted surface poroelastic uplift pattern explains well the observations. If poroelasticity is neglected, the spatial afterslip distribution is locally altered by up to +/- 40%. Moreover, we find that shallow crustal aftershocks mostly occur in regions of increased postseismic pore-pressure changes, indicating that both processes might be mechanically coupled. KW - Chilean subduction zone KW - poroelasticity KW - power-law rheology KW - afterslip inversion KW - InSAR KW - GNSS Y1 - 2022 U6 - https://doi.org/10.1029/2022GL098144 SN - 0094-8276 SN - 1944-8007 VL - 49 IS - 9 PB - Wiley CY - Hoboken, NJ ER - TY - JOUR A1 - Kamjunke, Norbert A1 - Beckers, Liza-Marie A1 - Herzsprung, Peter A1 - von Tümpling, Wolf A1 - Lechtenfeld, Oliver A1 - Tittel, Jörg A1 - Risse-Buhl, Ute A1 - Rode, Michael A1 - Wachholz, Alexander A1 - Kallies, Rene A1 - Schulze, Tobias A1 - Krauss, Martin A1 - Brack, Werner A1 - Comero, Sara A1 - Gawlik, Bernd Manfred A1 - Skejo, Hello A1 - Tavazzi, Simona A1 - Mariani, Giulio A1 - Borchardt, Dietrich A1 - Weitere, Markus T1 - Lagrangian profiles of riverine autotrophy, organic matter transformation, and micropollutants at extreme drought JF - The science of the total environment : an international journal for scientific research into the environment and its relationship with man N2 - On their way from inland to the ocean, flowing water bodies, their constituents and their biotic communities are ex-posed to complex transport and transformation processes. However, detailed process knowledge as revealed by La-grangian measurements adjusted to travel time is rare in large rivers, in particular at hydrological extremes. To fill this gap, we investigated autotrophic processes, heterotrophic carbon utilization, and micropollutant concentrations applying a Lagrangian sampling design in a 600 km section of the River Elbe (Germany) at historically low discharge. Under base flow conditions, we expect the maximum intensity of instream processes and of point source impacts. Phy-toplankton biomass and photosynthesis increased from upstream to downstream sites but maximum chlorophyll con-centration was lower than at mean discharge. Concentrations of dissolved macronutrients decreased to almost complete phosphate depletion and low nitrate values. The longitudinal increase of bacterial abundance and production was less pronounced than in wetter years and bacterial community composition changed downstream. Molecular analyses revealed a longitudinal increase of many DOM components due to microbial production, whereas saturated lipid-like DOM, unsaturated aromatics and polyphenols, and some CHOS surfactants declined. In decomposition exper-iments, DOM components with high O/C ratios and high masses decreased whereas those with low O/C ratios, low masses, and high nitrogen content increased at all sites. Radiocarbon age analyses showed that DOC was relatively old (890-1870 years B.P.), whereas the mineralized fraction was much younger suggesting predominant oxidation of algal lysis products and exudates particularly at downstream sites. Micropollutants determining toxicity for algae (terbuthylazine, terbutryn, isoproturon and lenacil), hexachlorocyclohexanes and DDTs showed higher concentrations from the middle towards the downstream part but calculated toxicity was not negatively correlated to phytoplankton. Overall, autotrophic and heterotrophic process rates and micropollutant concentrations increased from up-to down-stream reaches, but their magnitudes were not distinctly different to conditions at medium discharges. KW - Phytoplankton KW - Nutrients KW - Dissolved organic matter (DOM) KW - bacteria KW - Respiration KW - Micropollutants Y1 - 2022 U6 - https://doi.org/10.1016/j.scitotenv.2022.154243 SN - 0048-9697 SN - 1879-1026 VL - 828 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Herzschuh, Ulrike A1 - Li, Chenzhi A1 - Boehmer, Thomas A1 - Postl, Alexander K. A1 - Heim, Birgit A1 - Andreev, Andrei A. A1 - Cao, Xianyong A1 - Wieczorek, Mareike A1 - Ni, Jian T1 - LegacyPollen 1.0 BT - a taxonomically harmonized global late Quaternary pollen dataset of 2831 records with standardized chronologies JF - Earth system science data : ESSD N2 - Here we describe the LegacyPollen 1.0, a dataset of 2831 fossil pollen records with metadata, a harmonized taxonomy, and standardized chronologies. A total of 1032 records originate from North America, 1075 from Europe, 488 from Asia, 150 from Latin America, 54 from Africa, and 32 from the Indo-Pacific. The pollen data cover the late Quaternary (mostly the Holocene). The original 10 110 pollen taxa names (including variations in the notations) were harmonized to 1002 terrestrial taxa (including Cyperaceae), with woody taxa and major herbaceous taxa harmonized to genus level and other herbaceous taxa to family level. The dataset is valuable for synthesis studies of, for example, taxa areal changes, vegetation dynamics, human impacts (e.g., deforestation), and climate change at global or continental scales. The harmonized pollen and metadata as well as the harmonization table are available from PANGAEA (https://doi.org/10.1594/PANGAEA.929773; Herzschuh et al., 2021). R code for the harmonization is provided at Zenodo (https://doi.org/10.5281/zenodo.5910972; Herzschuh et al., 2022) so that datasets at a customized harmonization level can be easily established. Y1 - 2022 U6 - https://doi.org/10.5194/essd-14-3213-2022 SN - 1866-3508 SN - 1866-3516 VL - 14 IS - 7 SP - 3213 EP - 3227 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Stuenzi, Simone Maria A1 - Kruse, Stefan A1 - Boike, Julia A1 - Herzschuh, Ulrike A1 - Oehme, Alexander A1 - Pestryakova, Luidmila A. A1 - Westermann, Sebastian A1 - Langer, Moritz T1 - Thermohydrological impact of forest disturbances on ecosystem-protected permafrost JF - Journal of geophysical research : Biogeosciences N2 - Boreal forests cover over half of the global permafrost area and protect underlying permafrost. Boreal forest development, therefore, has an impact on permafrost evolution, especially under a warming climate. Forest disturbances and changing climate conditions cause vegetation shifts and potentially destabilize the carbon stored within the vegetation and permafrost. Disturbed permafrost-forest ecosystems can develop into a dry or swampy bush- or grasslands, shift toward broadleaf- or evergreen needleleaf-dominated forests, or recover to the pre-disturbance state. An increase in the number and intensity of fires, as well as intensified logging activities, could lead to a partial or complete ecosystem and permafrost degradation. We study the impact of forest disturbances (logging, surface, and canopy fires) on the thermal and hydrological permafrost conditions and ecosystem resilience. We use a dynamic multilayer canopy-permafrost model to simulate different scenarios at a study site in eastern Siberia. We implement expected mortality, defoliation, and ground surface changes and analyze the interplay between forest recovery and permafrost. We find that forest loss induces soil drying of up to 44%, leading to lower active layer thicknesses and abrupt or steady decline of a larch forest, depending on disturbance intensity. Only after surface fires, the most common disturbances, inducing low mortality rates, forests can recover and overpass pre-disturbance leaf area index values. We find that the trajectory of larch forests after surface fires is dependent on the precipitation conditions in the years after the disturbance. Dryer years can drastically change the direction of the larch forest development within the studied period. KW - permafrost KW - boreal forest KW - periglacial process KW - Siberia KW - larch forest KW - disturbance Y1 - 2022 U6 - https://doi.org/10.1029/2021JG006630 SN - 2169-8953 SN - 2169-8961 VL - 127 IS - 5 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Stevanato, Luca A1 - Baroni, Gabriele A1 - Oswald, Sascha A1 - Lunardon, Marcello A1 - Mareš, Vratislav A1 - Marinello, Francesco A1 - Moretto, Sandra A1 - Polo, Matteo A1 - Sartori, Paolo A1 - Schattan, Paul A1 - Rühm, Werner T1 - An alternative incoming correction for cosmic-ray neutron sensing observations using local muon measurement JF - Geophysical research letters N2 - Measuring the variability of incoming neutrons locally would be usefull for the cosmic-ray neutron sensing (CRNS) method. As the measurement of high energy neutrons is not so easy, alternative particles can be considered for such purpose. Among them, muons are particles created from the same cascade of primary cosmic-ray fluxes that generate neutrons at the ground. In addition, they can be easily detected by small and relatively inexpensive detectors. For these reasons they could provide a suitable local alternative to incoming corrections based on remote neutron monitor data. The reported measurements demonstrated that muon detection system can detect incoming cosmic-ray variations locally. Furthermore the precision of this measurement technique is considered adequate for many CRNS applications. KW - CRNS KW - soil-moisture KW - neutrons KW - muons KW - cosmic-rays Y1 - 2022 U6 - https://doi.org/10.1029/2021GL095383 SN - 0094-8276 SN - 1944-8007 VL - 49 IS - 6 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Svennevig, Kristian A1 - Hermanns, Reginald L. A1 - Keiding, Marie A1 - Binder, Daniel A1 - Citterio, Michele A1 - Dahl-Jensen, Trine A1 - Mertl, Stefan A1 - Sørensen, Erik Vest A1 - Voss, Peter Henrik T1 - A large frozen debris avalanche entraining warming permafrost ground-the June 2021 Assapaat landslibe, West Greenland JF - Landslides N2 - A large landslide (frozen debris avalanche) occurred at Assapaat on the south coast of the Nuussuaq Peninsula in Central West Greenland on June 13, 2021, at 04:04 local time. We present a compilation of available data from field observations, photos, remote sensing, and seismic monitoring to describe the event. Analysis of these data in combination with an analysis of pre- and post-failure digital elevation models results in the first description of this type of landslide. The frozen debris avalanche initiated as a 6.9 * 10(6) m(3) failure of permafrozen talus slope and underlying colluvium and till at 600-880 m elevation. It entrained a large volume of permafrozen colluvium along its 2.4 km path in two subsequent entrainment phases accumulating a total volume between 18.3 * 10(6) and 25.9 * 10(6) m(3). About 3.9 * 10(6) m(3) is estimated to have entered the Vaigat strait; however, no tsunami was reported, or is evident in the field. This is probably because the second stage of entrainment along with a flattening of slope angle reduced the mobility of the frozen debris avalanche. We hypothesise that the initial talus slope failure is dynamically conditioned by warming of the ice matrix that binds the permafrozen talus slope. When the slope ice temperature rises to a critical level, its shear resistance is reduced, resulting in an unstable talus slope prone to failure. Likewise, we attribute the large-scale entrainment to increasing slope temperature and take the frozen debris avalanche as a strong sign that the permafrost in this region is increasingly at a critical state. Global warming is enhanced in the Arctic and frequent landslide events in the past decade in Western Greenland let us hypothesise that continued warming will lead to an increase in the frequency and magnitude of these types of landslides. Essential data for critical arctic slopes such as precipitation, snowmelt, and ground and surface temperature are still missing to further test this hypothesis. It is thus strongly required that research funds are made available to better predict the change of landslide threat in the Arctic. KW - Assapaat landslide KW - Slope temperature KW - Global warming Y1 - 2022 U6 - https://doi.org/10.1007/s10346-022-01922-7 SN - 1612-510X SN - 1612-5118 VL - 19 SP - 2549 EP - 2567 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Krämer, Hauke Kai A1 - Gelbrecht, Maximilian A1 - Pavithran, Induja A1 - Sujith, Ravindran A1 - Marwan, Norbert T1 - Optimal state space reconstruction via Monte Carlo decision tree search JF - Nonlinear Dynamics N2 - A novel idea for an optimal time delay state space reconstruction from uni- and multivariate time series is presented. The entire embedding process is considered as a game, in which each move corresponds to an embedding cycle and is subject to an evaluation through an objective function. This way the embedding procedure can be modeled as a tree, in which each leaf holds a specific value of the objective function. By using a Monte Carlo ansatz, the proposed algorithm populates the tree with many leafs by computing different possible embedding paths and the final embedding is chosen as that particular path, which ends at the leaf with the lowest achieved value of the objective function. The method aims to prevent getting stuck in a local minimum of the objective function and can be used in a modular way, enabling practitioners to choose a statistic for possible delays in each embedding cycle as well as a suitable objective function themselves. The proposed method guarantees the optimization of the chosen objective function over the parameter space of the delay embedding as long as the tree is sampled sufficiently. As a proof of concept, we demonstrate the superiority of the proposed method over the classical time delay embedding methods using a variety of application examples. We compare recurrence plot-based statistics inferred from reconstructions of a Lorenz-96 system and highlight an improved forecast accuracy for map-like model data as well as for palaeoclimate isotope time series. Finally, we utilize state space reconstruction for the detection of causality and its strength between observables of a gas turbine type thermoacoustic combustor. KW - State space reconstruction KW - Embedding KW - Optimization KW - Time series analysis KW - Causality KW - Prediction KW - Recurrence analysis Y1 - 2022 U6 - https://doi.org/10.1007/s11071-022-07280-2 SN - 0924-090X SN - 1573-269X VL - 108 IS - 2 SP - 1525 EP - 1545 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Ou, Qi A1 - Daout, Simon A1 - Weiss, Jonathan R. A1 - Shen, Lin A1 - Lazecky, Milan A1 - Wright, Tim J. A1 - Parsons, Barry E. T1 - Large-Scale interseismic strain mapping of the NE Tibetan Plateau from Sentinel-1 Interferometry JF - Journal of geophysical research : Solid earth N2 - The launches of the Sentinel-1 synthetic aperture radar satellites in 2014 and 2016 started a new era of high-resolution velocity and strain rate mapping for the continents. However, multiple challenges exist in tying independently processed velocity data sets to a common reference frame and producing high-resolution strain rate fields. We analyze Sentinel-1 data acquired between 2014 and 2019 over the northeast Tibetan Plateau, and develop new methods to derive east and vertical velocities with similar to 100 m resolution and similar to 1 mm/yr accuracy across an area of 440,000 km(2). By implementing a new method of combining horizontal gradients of filtered east and interpolated north velocities, we derive the first similar to 1 km resolution strain rate field for this tectonically active region. The strain rate fields show concentrated shear strain along the Haiyuan and East Kunlun Faults, and local contractional strain on fault junctions, within the Qilianshan thrusts, and around the Longyangxia Reservoir. The Laohushan-Jingtai creeping section of the Haiyuan Fault is highlighted in our data set by extremely rapid strain rates. Strain across unknown portions of the Haiyuan Fault system, including shear on the eastern extension of the Dabanshan Fault and contraction at the western flank of the Quwushan, highlight unmapped tectonic structures. In addition to the uplift across most of the lowlands, the vertical velocities also contain climatic, hydrological or anthropogenic-related deformation signals. We demonstrate the enhanced view of large-scale active tectonic processes provided by high-resolution velocities and strain rates derived from Sentinel-1 data and highlight associated wide-ranging research applications. KW - Sentinel-1 InSAR KW - interseismic strain rate KW - creep and unmapped faults; KW - hydrological uplift and subsidence KW - tectonic geodesy KW - surface velocity KW - mapping Y1 - 2022 U6 - https://doi.org/10.1029/2022JB024176 SN - 2169-9313 SN - 2169-9356 VL - 127 IS - 6 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Cesar Fernández, Guillermo A1 - Lecomte, Karina A1 - Vignoni, Paula A1 - Soto-Rueda, Eliana Marcela A1 - Coria, Silvia H. A1 - Lirio, Juan Manuel A1 - Mlewski, Estela Cecilia T1 - Prokaryotic diversity and biogeochemical characteristics of benthic microbial ecosystems from James Ross Archipelago (West Antarctica) JF - Polar biology : current research and development in science and technology N2 - The James Ross archipelago houses numerous lakes and ponds. In this region, a vast diatom and cyanobacterial variety has been reported; however, the prokaryotic diversity in microbial mats from these lakes remains poorly explored. Here, a high-throughput sequencing of 16S rRNA gene in microbial mats from Lake Bart-Roja in James Ross Island and lakes Pan Negro and North Pan Negro located in Vega Island was performed. Combined with mineralogical and environmental characteristics, we analyzed the diversity and structure of the microbial communities. Sequences assigned to Archaea were extremely low, while Bacteria domain prevailed with the abundance of Proteobacteria (mostly Betaproteobacteriales) followed by Bacteroidetes, Verrucomicrobia, Firmicutes, and Cyanobacteria. Local environmental conditions, such as conductivity and Eh, provided differential microbial assemblages that might have implications in the oligotrophic status of the lakes. Consequently, a clear segregation at the family level was observed. In this sense, the assigned diversity was related to taxa recognized as denitrifiers and sulfur oxidizers. Particularly, in Lake Pan Negro sulfur-reducing and methanogenic representatives were also found and positively correlate with alkalinity and water depth. Moreover, Deinococcus-Thermus was observed in Lake Bart-Roja, while Melainabacteria (Cyanobacteria)-poorly reported in Antarctic mats-was detected in Lake Pan Negro. Epsilonbacteraeota was exclusively found in this lake, suggesting new potential phylotypes. This study contributes to the understanding of the diversity, composition, and structure of Antarctic benthic microbial ecosystems and provides highly valuable information, which can be used as a proxy to evaluate environmental changes affecting Antarctic microbiota. KW - Antarctica KW - microbial mats KW - microbial diversity KW - 16S rRNA genes KW - James Ross archipelago Y1 - 2022 U6 - https://doi.org/10.1007/s00300-021-02997-z SN - 0722-4060 SN - 1432-2056 VL - 45 IS - 3 SP - 405 EP - 418 PB - Springer CY - Berlin ; Heidelberg ER - TY - JOUR A1 - Gomez-Zapata, Juan Camilo A1 - Pittore, Massimiliano A1 - Cotton, Fabrice A1 - Lilienkamp, Henning A1 - Shinde, Simantini A1 - Aguirre, Paula A1 - Santa Maria, Hernan T1 - Epistemic uncertainty of probabilistic building exposure compositions in scenario-based earthquake loss models JF - Bulletin of Earthquake Engineering N2 - In seismic risk assessment, the sources of uncertainty associated with building exposure modelling have not received as much attention as other components related to hazard and vulnerability. Conventional practices such as assuming absolute portfolio compositions (i.e., proportions per building class) from expert-based assumptions over aggregated data crudely disregard the contribution of uncertainty of the exposure upon earthquake loss models. In this work, we introduce the concept that the degree of knowledge of a building stock can be described within a Bayesian probabilistic approach that integrates both expert-based prior distributions and data collection on individual buildings. We investigate the impact of the epistemic uncertainty in the portfolio composition on scenario-based earthquake loss models through an exposure-oriented logic tree arrangement based on synthetic building portfolios. For illustrative purposes, we consider the residential building stock of Valparaiso (Chile) subjected to seismic ground-shaking from one subduction earthquake. We have found that building class reconnaissance, either from prior assumptions by desktop studies with aggregated data (top-down approach), or from building-by-building data collection (bottom-up approach), plays a fundamental role in the statistical modelling of exposure. To model the vulnerability of such a heterogeneous building stock, we require that their associated set of structural fragility functions handle multiple spectral periods. Thereby, we also discuss the relevance and specific uncertainty upon generating either uncorrelated or spatially cross-correlated ground motion fields within this framework. We successively show how various epistemic uncertainties embedded within these probabilistic exposure models are differently propagated throughout the computed direct financial losses. This work calls for further efforts to redesign desktop exposure studies, while also highlighting the importance of exposure data collection with standardized and iterative approaches. KW - Epistemic uncertainty KW - Sensitivity analysis KW - Scheme KW - Faceted taxonomy KW - Probabilistic exposure modelling KW - Earthquake scenario KW - Data collection KW - Earthquake loss modelling KW - Spatially cross-correlated ground motion KW - fields Y1 - 2022 U6 - https://doi.org/10.1007/s10518-021-01312-9 SN - 1570-761X SN - 1573-1456 N1 - Update notice Correction to: Epistemic uncertainty of probabilistic building exposure compositions in scenario-based earthquake loss models (Bulletin of Earthquake Engineering, (2022), 20, 5, (2401-2438), https://doi.org/10.1007/s10518-021-01312-9) Bulletin of Earthquake Engineering, Volume 20, Issue 5, Pages 2439, March 2022, https://doi.org/10.1007/s10518-022-01340-z VL - 20 IS - 5 SP - 2401 EP - 2438 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Krassakis, Pavlos A1 - Karavias, Andreas A1 - Zygouri, Evangelia A1 - Roumpos, Christos A1 - Louloudis, Georgios A1 - Pyrgaki, Konstantina A1 - Koukouzas, Nikolaos A1 - Kempka, Thomas A1 - Karapanos, Dimitris T1 - GIS-based assessment of hybrid pumped hydro storage as a potential solution for the clean energy transition BT - the case of the Kardia lignite mine, Western Greece JF - Sensors N2 - Planned decommissioning of coal-fired plants in Europe requires innovative technical and economic strategies to support coal regions on their path towards a climate-resilient future. The repurposing of open pit mines into hybrid pumped hydro power storage (HPHS) of excess energy from the electric grid, and renewable sources will contribute to the EU Green Deal, increase the economic value, stabilize the regional job market and contribute to the EU energy supply security. This study aims to present a preliminary phase of a geospatial workflow used to evaluate land suitability by implementing a multi-criteria decision making (MCDM) technique with an advanced geographic information system (GIS) in the context of an interdisciplinary feasibility study on HPHS in the Kardia lignite open pit mine (Western Macedonia, Greece). The introduced geospatial analysis is based on the utilization of the constraints and ranking criteria within the boundaries of the abandoned mine regarding specific topographic and proximity criteria. The applied criteria were selected from the literature, while for their weights, the experts' judgement was introduced by implementing the analytic hierarchy process (AHP), in the framework of the ATLANTIS research program. According to the results, seven regions were recognized as suitable, with a potential energy storage capacity from 1.09 to 5.16 GWh. Particularly, the present study's results reveal that 9.27% (212,884 m(2)) of the area had a very low suitability, 15.83% (363,599 m(2)) had a low suitability, 23.99% (550,998 m(2)) had a moderate suitability, 24.99% (573,813 m(2)) had a high suitability, and 25.92% (595,125 m(2)) had a very high suitability for the construction of the upper reservoir. The proposed semi-automatic geospatial workflow introduces an innovative tool that can be applied to open pit mines globally to identify the optimum design for an HPHS system depending on the existing lower reservoir. KW - hybrid pumped hydro power storage KW - hydro power KW - hydro storage KW - GIS KW - Kardia mine KW - AHP KW - MCDM Y1 - 2023 U6 - https://doi.org/10.3390/s23020593 SN - 1424-8220 VL - 23 IS - 2 PB - MDPI CY - Basel ER - TY - JOUR A1 - Monhonval, Arthur A1 - Strauss, Jens A1 - Thomas, Maxime A1 - Hirst, Catherine A1 - Titeux, Hugues A1 - Louis, Justin A1 - Gilliot, Alexia A1 - D'Aische, Eleonore du Bois A1 - Pereira, Benoit A1 - Vandeuren, Aubry A1 - Grosse, Guido A1 - Schirrmeister, Lutz A1 - Jongejans, Loeka Laura A1 - Ulrich, Mathias A1 - Opfergelt, Sophie T1 - Thermokarst processes increase the supply of stabilizing surfaces and elements (Fe, Mn, Al, and Ca) for mineral-organic carbon interactions JF - Permafrost and periglacial processes N2 - The stabilizing properties of mineral-organic carbon (OC) interactions have been studied in many soil environments (temperate soils, podzol lateritic soils, and paddy soils). Recently, interest in their role in permafrost regions is increasing as permafrost was identified as a hotspot of change. In thawing ice-rich permafrost regions, such as the Yedoma domain, 327-466 Gt of frozen OC is buried in deep sediments. Interactions between minerals and OC are important because OC is located very near the mineral matrix. Mineral surfaces and elements could mitigate recent and future greenhouse gas emissions through physical and/or physicochemical protection of OC. The dynamic changes in redox and pH conditions associated with thermokarst lake formation and drainage trigger metal-oxide dissolution and precipitation, likely influencing OC stabilization and microbial mineralization. However, the influence of thermokarst processes on mineral-OC interactions remains poorly constrained. In this study, we aim to characterize Fe, Mn, Al, and Ca minerals and their potential protective role for OC. Total and selective extractions were used to assess the crystalline and amorphous oxides or complexed metal pools as well as the organic acids found within these pools. We analyzed four sediment cores from an ice-rich permafrost area in Central Yakutia, which were drilled (i) in undisturbed Yedoma uplands, (ii) beneath a recent lake formed within Yedoma deposits, (iii) in a drained thermokarst lake basin, and (iv) beneath a mature thermokarst lake from the early Holocene period. We find a decrease in the amount of reactive Fe, Mn, Al, and Ca in the deposits on lake formation (promoting reduction reactions), and this was largely balanced by an increase in the amount of reactive metals in the deposits on lake drainage (promoting oxidation reactions). We demonstrate an increase in the metal to C molar ratio on thermokarst process, which may indicate an increase in metal-C bindings and could provide a higher protective role against microbial mineralization of organic matter. Finally, we find that an increase in mineral-OC interactions corresponded to a decrease in CO2 and CH4 gas emissions on thermokarst process. Mineral-OC interactions could mitigate greenhouse gas production from permafrost thaw as soon as lake drainage occurs. KW - Arctic KW - organic carbon stabilization KW - permafrost KW - redox processes KW - thaw KW - Yedoma Y1 - 2022 U6 - https://doi.org/10.1002/ppp.2162 SN - 1045-6740 SN - 1099-1530 VL - 33 IS - 4 SP - 452 EP - 469 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Katzenberger, Anja A1 - Levermann, Anders A1 - Schewe, Jacob A1 - Pongratz, Julia T1 - Intensification of very wet monsoon seasons in India under global warming JF - Geophysical research letters N2 - Rainfall-intense summer monsoon seasons on the Indian subcontinent that are exceeding long-term averages cause widespread floods and landslides. Here we show that the latest generation of coupled climate models robustly project an intensification of very rainfall-intense seasons (June-September). Under the shared socioeconomic pathway SSP5-8.5, very wet monsoon seasons as observed in only 5 years in the period 1965-2015 are projected to occur 8 times more often in 2050-2100 in the multi-model average. Under SSP2-4.5, these seasons become only a factor of 6 times more frequent, showing that even modest efforts to mitigate climate change can have a strong impact on the frequency of very strong rainfall seasons. Besides, we find that the increasing risk of extreme seasonal rainfall is accompanied by a shift from days with light rainfall to days with moderate or heavy rainfall. Additionally, the number of wet days is projected to increase. KW - Indian monsoon KW - climate modeling KW - extreme seasons KW - climate change KW - CMIP6 KW - India Y1 - 2022 U6 - https://doi.org/10.1029/2022GL098856 SN - 0094-8276 SN - 1944-8007 VL - 49 IS - 15 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Allroggen, Niklas A1 - Heincke, Bjorn H. A1 - Koyan, Philipp A1 - Wheeler, Walter A1 - Ronning, Jan S. T1 - 3D ground-penetrating radar attribute classification BT - a case study from a paleokarst breccia pipe in the Billefjorden area on Spitsbergen, Svalbard JF - Geophysics N2 - Ground-penetrating radar (GPR) is a method that can provide detailed information about the near subsurface in sedimentary and carbonate environments. The classical interpretation of GPR data (e.g., based on manual feature selection) often is labor-intensive and limited by the experience of the intercally used for seismic interpretation, can provide faster, more repeatable, and less biased interpretations. We have recorded a 3D GPD data set collected across a paleokarst breccia pipe in the Billefjorden area on Spitsbergen, Svalbard. After performing advanced processing, we compare the results of a classical GPR interpretation to the results of an attribute-based classification. Our attribute classification incorporates a selection of dip and textural attributes as the input for a k-means clustering approach. Similar to the results of the classical interpretation, the resulting classes differentiate between undisturbed strata and breccias or fault zones. The classes also reveal details inside the breccia pipe that are not discerned in the classical fer that the intrapipe GPR facies result from subtle differences, such as breccia lithology, clast size, or pore-space filling. Y1 - 2022 U6 - https://doi.org/10.1190/GEO2021-0651.1 SN - 0016-8033 SN - 1942-2156 VL - 87 IS - 4 SP - WB19 EP - WB30 PB - Society of Exploration Geophysicists CY - Tulsa ER - TY - JOUR A1 - Illien, Luc A1 - Sens-Schönfelder, Christoph A1 - Andermann, Christoff A1 - Marc, Odin A1 - Cook, Kristen L. A1 - Adhikari, Lok Bijaya A1 - Hovius, Niels T1 - Seismic velocity recovery in the subsurface BT - transient damage and groundwater drainage following the 2015 Gorkha Earthquake, Nepal JF - Journal of geophysical research : Solid earth N2 - Shallow earthquakes frequently disturb the hydrological and mechanical state of the subsurface, with consequences for hazard and water management. Transient post-seismic hydrological behavior has been widely reported, suggesting that the recovery of material properties (relaxation) following ground shaking may impact groundwater fluctuations. However, the monitoring of seismic velocity variations associated with earthquake damage and hydrological variations are often done assuming that both effects are independent. In a field site prone to highly variable hydrological conditions, we disentangle the different forcing of the relative seismic velocity variations delta v retrieved from a small dense seismic array in Nepal in the aftermath of the 2015 M-w 7.8 Gorkha earthquake. We successfully model transient damage effects by introducing a universal relaxation function that contains a unique maximum relaxation timescale for the main shock and the aftershocks, independent of the ground shaking levels. Next, we remove the modeled velocity from the raw data and test whether the corresponding residuals agree with a background hydrological behavior we inferred from a previously calibrated groundwater model. The fitting of the delta v data with this model is improved when we introduce transient hydrological properties in the phase immediately following the main shock. This transient behavior, interpreted as an enhanced permeability in the shallow subsurface, lasts for similar to 6 months and is shorter than the damage relaxation (similar to 1 yr). Thus, we demonstrate the capability of seismic interferometry to deconvolve transient hydrological properties after earthquakes from non-linear mechanical recovery. KW - earthquake damage KW - earthquake hydrology KW - relaxation KW - Gorkha earthquake KW - seismic monitoring KW - ambient noise Y1 - 2022 U6 - https://doi.org/10.1029/2021JB023402 SN - 2169-9313 SN - 2169-9356 VL - 127 IS - 2 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Rodriguez, Victoria A1 - Moskwa, Lisa-Marie A1 - Oses, Romulo A1 - Kühn, Peter A1 - Riveras-Muñoz, Nicolás A1 - Seguel, Oscar A1 - Scholten, Thomas A1 - Wagner, Dirk T1 - Impact of climate and slope aspects on the composition of soil bacterial communities involved in pedogenetic processes along the chilean coastal cordillera JF - Microorganisms N2 - Soil bacteria play a fundamental role in pedogenesis. However, knowledge about both the impact of climate and slope aspects on microbial communities and the consequences of these items in pedogenesis is lacking. Therefore, soil-bacterial communities from four sites and two different aspects along the climate gradient of the Chilean Coastal Cordillera were investigated. Using a combination of microbiological and physicochemical methods, soils that developed in arid, semi-arid, mediterranean, and humid climates were analyzed. Proteobacteria, Acidobacteria, Chloroflexi, Verrucomicrobia, and Planctomycetes were found to increase in abundance from arid to humid climates, while Actinobacteria and Gemmatimonadetes decreased along the transect. Bacterial-community structure varied with climate and aspect and was influenced by pH, bulk density, plant-available phosphorus, clay, and total organic-matter content. Higher bacterial specialization was found in arid and humid climates and on the south-facing slope and was likely promoted by stable microclimatic conditions. The presence of specialists was associated with ecosystem-functional traits, which shifted from pioneers that accumulated organic matter in arid climates to organic decomposers in humid climates. These findings provide new perspectives on how climate and slope aspects influence the composition and functional capabilities of bacteria, with most of these capabilities being involved in pedogenetic processes. KW - bacterial-community structure KW - bacterial diversity KW - climate gradient KW - slope aspect KW - Chilean Coastal Cordillera KW - soil formation Y1 - 2022 U6 - https://doi.org/10.3390/microorganisms10050847 SN - 2076-2607 VL - 10 IS - 5 PB - MDPI CY - Basel ER - TY - JOUR A1 - Platz, Anna A1 - Weckmann, Ute A1 - Pek, Josef A1 - Kovacikova, Svetlana A1 - Klanica, Radek A1 - Mair, Johannes A1 - Aleid, Basel T1 - 3D imaging of the subsurface electrical resistivity structure in West Bohemia/Upper Palatinate covering mofettes and quaternary volcanic structures by using magnetotellurics JF - Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth N2 - The region of West Bohemia and Upper Palatinate belongs to the West Bohemian Massif. The study area is situated at the junction of three different Variscan tectonic units and hosts the ENE-WSW trending Ohre Rift as well as many different fault systems. The entire region is characterized by ongoing magmatic processes in the intra-continental lithospheric mantle expressed by a series of phenomena, including e.g. the occurrence of repeated earthquake swarms and massive degassing of mantle derived CO2 in form of mineral springs and mofettes. Ongoing active tectonics is mainly manifested by Cenozoic volcanism represented by different Quaternary volcanic structures. All these phenomena make the Ohre Rift a unique target area for European intra-continental geo-scientific research. With magnetotelluric (MT) measurements we image the subsurface distribution of the electrical resistivity and map possible fluid pathways. Two-dimensional (2D) inversion results by Munoz et al. (2018) reveal a conductive channel in the vicinity of the earthquake swarm region that extends from the lower crust to the surface forming a pathway for fluids into the region of the mofettes. A second conductive channel is present in the south of their model; however, their 2D inversions allow ambiguous interpretations of this feature. Therefore, we conducted a large 3D MT field experiment extending the study area towards the south. The 3D inversion result matches well with the known geology imaging different fluid/magma reservoirs at crust-mantle depth and mapping possible fluid pathways from the reservoirs to the surface feeding known mofettes and spas. A comparison of 3D and 2D inversion results suggests that the 2D inversion results are considerably characterized by 3D and off-profile structures. In this context, the new results advocate for the swarm earthquakes being located in the resistive host rock surrounding the conductive channels; a finding in line with observations e.g. at the San Andreas Fault, California. KW - Magnetotellurics KW - Ohre Rift KW - Conductive channel KW - Fluid/magma reservoir KW - Earthquake swarm Y1 - 2022 U6 - https://doi.org/10.1016/j.tecto.2022.229353 SN - 0040-1951 SN - 1879-3266 VL - 833 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Nguyen, Tam A1 - Kumar, Rohini A1 - Musolff, Andreas A1 - Lutz, Stefanie R. A1 - Sarrazin, Fanny A1 - Attinger, Sabine A1 - Fleckenstein, Jan H. T1 - Disparate Seasonal Nitrate Export From Nested Heterogeneous Subcatchments Revealed With StorAge Selection Functions JF - Water resources research N2 - Understanding catchment controls on catchment solute export is a prerequisite for water quality management. StorAge Selection (SAS) functions encapsulate essential information about catchment functioning in terms of discharge selection preference and solute export dynamics. However, they lack information on the spatial origin of solutes when applied at the catchment scale, thereby limiting our understanding of the internal (subcatchment) functioning. Here, we parameterized SAS functions in a spatially explicit way to understand the internal catchment responses and transport dynamics of reactive dissolved nitrate (N-NO3). The model was applied in a nested mesoscale catchment (457 km(2)), consisting of a mountainous partly forested, partly agricultural subcatchment, a middle-reach forested subcatchment, and a lowland agricultural subcatchment. The model captured flow and nitrate concentration dynamics not only at the catchment outlet but also at internal gauging stations. Results reveal disparate subsurface mixing dynamics and nitrate export among headwater and lowland subcatchments. The headwater subcatchment has high seasonal variation in subsurface mixing schemes and younger water in discharge, while the lowland subcatchment has less pronounced seasonality in subsurface mixing and much older water in discharge. Consequently, nitrate concentration in discharge from the headwater subcatchment shows strong seasonality, whereas that from the lowland subcatchment is stable in time. The temporally varying responses of headwater and lowland subcatchments alternate the dominant contribution to nitrate export in high and low-flow periods between subcatchments. Overall, our results demonstrate that the spatially explicit SAS modeling provides useful information about internal catchment functioning, helping to develop or evaluate spatial management practices. KW - catchment nitrate export KW - StorAge Selection function KW - travel time distribution KW - mesoscale heterogeneous catchment KW - subcatchment response Y1 - 2022 U6 - https://doi.org/10.1029/2021WR030797 SN - 0043-1397 SN - 1944-7973 VL - 58 IS - 3 PB - American Geophysical Union CY - Washington ER -