TY - JOUR A1 - Molkenthin, Christian A1 - Donner, Christian A1 - Reich, Sebastian A1 - Zöller, Gert A1 - Hainzl, Sebastian A1 - Holschneider, Matthias A1 - Opper, Manfred T1 - GP-ETAS: semiparametric Bayesian inference for the spatio-temporal epidemic type aftershock sequence model JF - Statistics and Computing N2 - The spatio-temporal epidemic type aftershock sequence (ETAS) model is widely used to describe the self-exciting nature of earthquake occurrences. While traditional inference methods provide only point estimates of the model parameters, we aim at a fully Bayesian treatment of model inference, allowing naturally to incorporate prior knowledge and uncertainty quantification of the resulting estimates. Therefore, we introduce a highly flexible, non-parametric representation for the spatially varying ETAS background intensity through a Gaussian process (GP) prior. Combined with classical triggering functions this results in a new model formulation, namely the GP-ETAS model. We enable tractable and efficient Gibbs sampling by deriving an augmented form of the GP-ETAS inference problem. This novel sampling approach allows us to assess the posterior model variables conditioned on observed earthquake catalogues, i.e., the spatial background intensity and the parameters of the triggering function. Empirical results on two synthetic data sets indicate that GP-ETAS outperforms standard models and thus demonstrate the predictive power for observed earthquake catalogues including uncertainty quantification for the estimated parameters. Finally, a case study for the l'Aquila region, Italy, with the devastating event on 6 April 2009, is presented. KW - Self-exciting point process KW - Hawkes process KW - Spatio-temporal ETAS model KW - Bayesian inference KW - Sampling KW - Earthquake modeling KW - Gaussian process KW - Data augmentation Y1 - 2022 U6 - https://doi.org/10.1007/s11222-022-10085-3 SN - 0960-3174 SN - 1573-1375 VL - 32 IS - 2 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Schanner, Maximilian A1 - Korte, Monika A1 - Holschneider, Matthias T1 - ArchKalmag14k: A kalman-filter based global geomagnetic model for the holocene JF - Journal of geophysical research : Solid earth N2 - We propose a global geomagnetic field model for the last 14 thousand years, based on thermoremanent records. We call the model ArchKalmag14k. ArchKalmag14k is constructed by modifying recently proposed algorithms, based on space-time correlations. Due to the amount of data and complexity of the model, the full Bayesian posterior is numerically intractable. To tackle this, we sequentialize the inversion by implementing a Kalman-filter with a fixed time step. Every step consists of a prediction, based on a degree dependent temporal covariance, and a correction via Gaussian process regression. Dating errors are treated via a noisy input formulation. Cross correlations are reintroduced by a smoothing algorithm and model parameters are inferred from the data. Due to the specific statistical nature of the proposed algorithms, the model comes with space and time-dependent uncertainty estimates. The new model ArchKalmag14k shows less variation in the large-scale degrees than comparable models. Local predictions represent the underlying data and agree with comparable models, if the location is sampled well. Uncertainties are bigger for earlier times and in regions of sparse data coverage. We also use ArchKalmag14k to analyze the appearance and evolution of the South Atlantic anomaly together with reverse flux patches at the core-mantle boundary, considering the model uncertainties. While we find good agreement with earlier models for recent times, our model suggests a different evolution of intensity minima prior to 1650 CE. In general, our results suggest that prior to 6000 BCE the data is not sufficient to support global models. Y1 - 2022 U6 - https://doi.org/10.1029/2021JB023166 SN - 2169-9313 SN - 2169-9356 VL - 127 IS - 2 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Ropp, Guillaume A1 - Lesur, Vincent A1 - Bärenzung, Julien A1 - Holschneider, Matthias T1 - Sequential modelling of the Earth’s core magnetic field JF - Earth, Planets and Space N2 - We describe a new, original approach to the modelling of the Earth's magnetic field. The overall objective of this study is to reliably render fast variations of the core field and its secular variation. This method combines a sequential modelling approach, a Kalman filter, and a correlation-based modelling step. Sources that most significantly contribute to the field measured at the surface of the Earth are modelled. Their separation is based on strong prior information on their spatial and temporal behaviours. We obtain a time series of model distributions which display behaviours similar to those of recent models based on more classic approaches, particularly at large temporal and spatial scales. Interesting new features and periodicities are visible in our models at smaller time and spatial scales. An important aspect of our method is to yield reliable error bars for all model parameters. These errors, however, are only as reliable as the description of the different sources and the prior information used are realistic. Finally, we used a slightly different version of our method to produce candidate models for the thirteenth edition of the International Geomagnetic Reference Field. KW - geomagnetic field KW - secular variation KW - Kalman filter KW - IGRF Y1 - 2020 U6 - https://doi.org/10.1186/s40623-020-01230-1 SN - 1880-5981 VL - 72 IS - 1 PB - Springer CY - New York ER - TY - JOUR A1 - Schanner, Maximilian Arthus A1 - Mauerberger, Stefan A1 - Korte, Monika A1 - Holschneider, Matthias T1 - Correlation based time evolution of the archeomagnetic field JF - Journal of geophysical research : JGR ; an international quarterly. B, Solid earth N2 - In a previous study, a new snapshot modeling concept for the archeomagnetic field was introduced (Mauerberger et al., 2020, ). By assuming a Gaussian process for the geomagnetic potential, a correlation-based algorithm was presented, which incorporates a closed-form spatial correlation function. This work extends the suggested modeling strategy to the temporal domain. A space-time correlation kernel is constructed from the tensor product of the closed-form spatial correlation kernel with a squared exponential kernel in time. Dating uncertainties are incorporated into the modeling concept using a noisy input Gaussian process. All but one modeling hyperparameters are marginalized, to reduce their influence on the outcome and to translate their variability to the posterior variance. The resulting distribution incorporates uncertainties related to dating, measurement and modeling process. Results from application to archeomagnetic data show less variation in the dipole than comparable models, but are in general agreement with previous findings. Y1 - 2021 U6 - https://doi.org/10.1029/2020JB021548 SN - 2169-9313 SN - 2169-9356 VL - 126 IS - 7 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Baerenzung, Julien A1 - Holschneider, Matthias A1 - Wicht, Johannes A1 - Lesur, Vincent A1 - Sanchez, Sabrina T1 - The Kalmag model as a candidate for IGRF-13 JF - Earth, planets and space N2 - We present a new model of the geomagnetic field spanning the last 20 years and called Kalmag. Deriving from the assimilation of CHAMP and Swarm vector field measurements, it separates the different contributions to the observable field through parameterized prior covariance matrices. To make the inverse problem numerically feasible, it has been sequentialized in time through the combination of a Kalman filter and a smoothing algorithm. The model provides reliable estimates of past, present and future mean fields and associated uncertainties. The version presented here is an update of our IGRF candidates; the amount of assimilated data has been doubled and the considered time window has been extended from [2000.5, 2019.74] to [2000.5, 2020.33]. KW - Geomagnetic field KW - Secular variation KW - Assimilation KW - Kalman filter KW - Machine learning Y1 - 2020 U6 - https://doi.org/10.1186/s40623-020-01295-y SN - 1880-5981 VL - 72 IS - 1 PB - Springer CY - New York ER - TY - JOUR A1 - Mauerberger, Stefan A1 - Schanner, Maximilian Arthus A1 - Korte, Monika A1 - Holschneider, Matthias T1 - Correlation based snapshot models of the archeomagnetic field JF - Geophysical journal international N2 - For the time stationary global geomagnetic field, a new modelling concept is presented. A Bayesian non-parametric approach provides realistic location dependent uncertainty estimates. Modelling related variabilities are dealt with systematically by making little subjective apriori assumptions. Rather than parametrizing the model by Gauss coefficients, a functional analytic approach is applied. The geomagnetic potential is assumed a Gaussian process to describe a distribution over functions. Apriori correlations are given by an explicit kernel function with non-informative dipole contribution. A refined modelling strategy is proposed that accommodates non-linearities of archeomagnetic observables: First, a rough field estimate is obtained considering only sites that provide full field vector records. Subsequently, this estimate supports the linearization that incorporates the remaining incomplete records. The comparison of results for the archeomagnetic field over the past 1000 yr is in general agreement with previous models while improved model uncertainty estimates are provided. KW - geopotential theory KW - archaeomagnetism KW - magnetic field variations through KW - time KW - palaeomagnetism KW - inverse theory KW - statistical methods Y1 - 2020 U6 - https://doi.org/10.1093/gji/ggaa336 SN - 0956-540X SN - 1365-246X VL - 223 IS - 1 SP - 648 EP - 665 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Schindler, Daniel A1 - Moldenhawer, Ted A1 - Stange, Maike A1 - Lepro, Valentino A1 - Beta, Carsten A1 - Holschneider, Matthias A1 - Huisinga, Wilhelm T1 - Analysis of protrusion dynamics in amoeboid cell motility by means of regularized contour flows JF - PLoS Computational Biology : a new community journal N2 - Amoeboid cell motility is essential for a wide range of biological processes including wound healing, embryonic morphogenesis, and cancer metastasis. It relies on complex dynamical patterns of cell shape changes that pose long-standing challenges to mathematical modeling and raise a need for automated and reproducible approaches to extract quantitative morphological features from image sequences. Here, we introduce a theoretical framework and a computational method for obtaining smooth representations of the spatiotemporal contour dynamics from stacks of segmented microscopy images. Based on a Gaussian process regression we propose a one-parameter family of regularized contour flows that allows us to continuously track reference points (virtual markers) between successive cell contours. We use this approach to define a coordinate system on the moving cell boundary and to represent different local geometric quantities in this frame of reference. In particular, we introduce the local marker dispersion as a measure to identify localized membrane expansions and provide a fully automated way to extract the properties of such expansions, including their area and growth time. The methods are available as an open-source software package called AmoePy, a Python-based toolbox for analyzing amoeboid cell motility (based on time-lapse microscopy data), including a graphical user interface and detailed documentation. Due to the mathematical rigor of our framework, we envision it to be of use for the development of novel cell motility models. We mainly use experimental data of the social amoeba Dictyostelium discoideum to illustrate and validate our approach.
Author summary Amoeboid motion is a crawling-like cell migration that plays an important key role in multiple biological processes such as wound healing and cancer metastasis. This type of cell motility results from expanding and simultaneously contracting parts of the cell membrane. From fluorescence images, we obtain a sequence of points, representing the cell membrane, for each time step. By using regression analysis on these sequences, we derive smooth representations, so-called contours, of the membrane. Since the number of measurements is discrete and often limited, the question is raised of how to link consecutive contours with each other. In this work, we present a novel mathematical framework in which these links are described by regularized flows allowing a certain degree of concentration or stretching of neighboring reference points on the same contour. This stretching rate, the so-called local dispersion, is used to identify expansions and contractions of the cell membrane providing a fully automated way of extracting properties of these cell shape changes. We applied our methods to time-lapse microscopy data of the social amoeba Dictyostelium discoideum. Y1 - 2021 U6 - https://doi.org/10.1371/journal.pcbi.1009268 SN - 1553-734X SN - 1553-7358 VL - 17 IS - 8 PB - PLoS CY - San Fransisco ER - TY - JOUR A1 - Sharma, Shubham A1 - Hainzl, Sebastian A1 - Zöller, Gert A1 - Holschneider, Matthias T1 - Is Coulomb stress the best choice for aftershock forecasting? JF - Journal of geophysical research : Solid earth N2 - The Coulomb failure stress (CFS) criterion is the most commonly used method for predicting spatial distributions of aftershocks following large earthquakes. However, large uncertainties are always associated with the calculation of Coulomb stress change. The uncertainties mainly arise due to nonunique slip inversions and unknown receiver faults; especially for the latter, results are highly dependent on the choice of the assumed receiver mechanism. Based on binary tests (aftershocks yes/no), recent studies suggest that alternative stress quantities, a distance-slip probabilistic model as well as deep neural network (DNN) approaches, all are superior to CFS with predefined receiver mechanism. To challenge this conclusion, which might have large implications, we use 289 slip inversions from SRCMOD database to calculate more realistic CFS values for a layered half-space and variable receiver mechanisms. We also analyze the effect of the magnitude cutoff, grid size variation, and aftershock duration to verify the use of receiver operating characteristic (ROC) analysis for the ranking of stress metrics. The observations suggest that introducing a layered half-space does not improve the stress maps and ROC curves. However, results significantly improve for larger aftershocks and shorter time periods but without changing the ranking. We also go beyond binary testing and apply alternative statistics to test the ability to estimate aftershock numbers, which confirm that simple stress metrics perform better than the classic Coulomb failure stress calculations and are also better than the distance-slip probabilistic model. Y1 - 2020 U6 - https://doi.org/10.1029/2020JB019553 SN - 2169-9313 SN - 2169-9356 VL - 125 IS - 9 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Cotronei, Mariantonia A1 - Di Salvo, Rosa A1 - Holschneider, Matthias A1 - Puccio, Luigia T1 - Interpolation in reproducing kernel Hilbert spaces based on random subdivision schemes JF - Journal of computational and applied mathematics N2 - In this paper we present a Bayesian framework for interpolating data in a reproducing kernel Hilbert space associated with a random subdivision scheme, where not only approximations of the values of a function at some missing points can be obtained, but also uncertainty estimates for such predicted values. This random scheme generalizes the usual subdivision by taking into account, at each level, some uncertainty given in terms of suitably scaled noise sequences of i.i.d. Gaussian random variables with zero mean and given variance, and generating, in the limit, a Gaussian process whose correlation structure is characterized and used for computing realizations of the conditional posterior distribution. The hierarchical nature of the procedure may be exploited to reduce the computational cost compared to standard techniques in the case where many prediction points need to be considered. KW - Subdivision schemes KW - Interpolation KW - Simulation of Gaussian processes KW - Bayesian inversion Y1 - 2016 U6 - https://doi.org/10.1016/j.cam.2016.08.002 SN - 0377-0427 SN - 1879-1778 VL - 311 SP - 342 EP - 353 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Lesur, Vincent A1 - Wardinski, Ingo A1 - Bärenzung, Julien A1 - Holschneider, Matthias T1 - On the frequency spectra of the core magnetic field Gauss coefficients JF - Physics of the earth and planetary interiors N2 - From monthly mean observatory data spanning 1957-2014, geomagnetic field secular variation values were calculated by annual differences. Estimates of the spherical harmonic Gauss coefficients of the core field secular variation were then derived by applying a correlation based modelling. Finally, a Fourier transform was applied to the time series of the Gauss coefficients. This process led to reliable temporal spectra of the Gauss coefficients up to spherical harmonic degree 5 or 6, and down to periods as short as 1 or 2 years depending on the coefficient. We observed that a k(-2) slope, where k is the frequency, is an acceptable approximation for these spectra, with possibly an exception for the dipole field. The monthly estimates of the core field secular variation at the observatory sites also show that large and rapid variations of the latter happen. This is an indication that geomagnetic jerks are frequent phenomena and that significant secular variation signals at short time scales - i.e. less than 2 years, could still be extracted from data to reveal an unexplored part of the core dynamics. KW - Geomagnetism KW - Core field KW - Secular variation rate of change KW - Geomagnetic jerks KW - Correlation based modelling Y1 - 2017 U6 - https://doi.org/10.1016/j.pepi.2017.05.017 SN - 0031-9201 SN - 1872-7395 VL - 276 SP - 145 EP - 158 PB - Elsevier CY - Amsterdam ER - TY - GEN A1 - Zöller, Gert A1 - Holschneider, Matthias T1 - Reply to “Comment on ‘The Maximum Possible and the Maximum Expected Earthquake Magnitude for Production‐Induced Earthquakes at the Gas Field in Groningen, The Netherlands’ by Gert Zöller and Matthias Holschneider” by Mathias Raschke T2 - Bulletin of the Seismological Society of America Y1 - 2018 U6 - https://doi.org/10.1785/0120170131 SN - 0037-1106 SN - 1943-3573 VL - 108 IS - 2 SP - 1029 EP - 1030 PB - Seismological Society of America CY - Albany ER - TY - JOUR A1 - Fiedler, Bernhard A1 - Zöller, Gert A1 - Holschneider, Matthias A1 - Hainzl, Sebastian T1 - Multiple Change-Point Detection in Spatiotemporal Seismicity Data JF - Bulletin of the Seismological Society of America N2 - Earthquake rates are driven by tectonic stress buildup, earthquake-induced stress changes, and transient aseismic processes. Although the origin of the first two sources is known, transient aseismic processes are more difficult to detect. However, the knowledge of the associated changes of the earthquake activity is of great interest, because it might help identify natural aseismic deformation patterns such as slow-slip events, as well as the occurrence of induced seismicity related to human activities. For this goal, we develop a Bayesian approach to identify change-points in seismicity data automatically. Using the Bayes factor, we select a suitable model, estimate possible change-points, and we additionally use a likelihood ratio test to calculate the significance of the change of the intensity. The approach is extended to spatiotemporal data to detect the area in which the changes occur. The method is first applied to synthetic data showing its capability to detect real change-points. Finally, we apply this approach to observational data from Oklahoma and observe statistical significant changes of seismicity in space and time. Y1 - 2018 U6 - https://doi.org/10.1785/0120170236 SN - 0037-1106 SN - 1943-3573 VL - 108 IS - 3A SP - 1147 EP - 1159 PB - Seismological Society of America CY - Albany ER - TY - JOUR A1 - Sanchez, S. A1 - Wicht, J. A1 - Baerenzung, Julien A1 - Holschneider, Matthias T1 - Sequential assimilation of geomagnetic observations BT - perspectives for the reconstruction and prediction of core dynamics JF - Geophysical journal international N2 - High-precision observations of the present-day geomagnetic field by ground-based observatories and satellites provide unprecedented conditions for unveiling the dynamics of the Earth’s core. Combining geomagnetic observations with dynamo simulations in a data assimilation (DA) framework allows the reconstruction of past and present states of the internal core dynamics. The essential information that couples the internal state to the observations is provided by the statistical correlations from a numerical dynamo model in the form of a model covariance matrix. Here we test a sequential DA framework, working through a succession of forecast and analysis steps, that extracts the correlations from an ensemble of dynamo models. The primary correlations couple variables of the same azimuthal wave number, reflecting the predominant axial symmetry of the magnetic field. Synthetic tests show that the scheme becomes unstable when confronted with high-precision geomagnetic observations. Our study has identified spurious secondary correlations as the origin of the problem. Keeping only the primary correlations by localizing the covariance matrix with respect to the azimuthal wave number suffices to stabilize the assimilation. While the first analysis step is fundamental in constraining the large-scale interior state, further assimilation steps refine the smaller and more dynamical scales. This refinement turns out to be critical for long-term geomagnetic predictions. Increasing the assimilation steps from one to 18 roughly doubles the prediction horizon for the dipole from about  tree to six centuries, and from 30 to about  60 yr for smaller observable scales. This improvement is also reflected on the predictability of surface intensity features such as the South Atlantic Anomaly. Intensity prediction errors are decreased roughly by a half when assimilating long observation sequences. KW - Magnetic field variations through time KW - Core dynamics KW - Dynamo: theories and simulations KW - Inverse theory KW - Probabilistic forecasting Y1 - 2019 U6 - https://doi.org/10.1093/gji/ggz090 SN - 0956-540X SN - 1365-246X VL - 217 IS - 2 SP - 1434 EP - 1450 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Holschneider, Matthias A1 - Teschke, Gerd T1 - Existence and computation of optimally localized coherent states JF - Journal of mathematical physics N2 - This paper is concerned with localization properties of coherent states. Instead of classical uncertainty relations we consider "generalized" localization quantities. This is done by introducing measures on the reproducing kernel. In this context we may prove the existence of optimally localized states. Moreover, we provide a numerical scheme for deriving them. Y1 - 2006 U6 - https://doi.org/10.1063/1.2375031 SN - 0022-2488 SN - 1089-7658 VL - 47 IS - 3 SP - 211 EP - 214 PB - Elsevier CY - Melville ER - TY - JOUR A1 - Zöller, Gert A1 - Holschneider, Matthias T1 - The Earthquake History in a Fault Zone Tells Us Almost Nothing about m(max) JF - Seismological research letters N2 - In the present study, we summarize and evaluate the endeavors from recent years to estimate the maximum possible earthquake magnitude m(max) from observed data. In particular, we use basic and physically motivated assumptions to identify best cases and worst cases in terms of lowest and highest degree of uncertainty of m(max). In a general framework, we demonstrate that earthquake data and earthquake proxy data recorded in a fault zone provide almost no information about m(max) unless reliable and homogeneous data of a long time interval, including several earthquakes with magnitude close to m(max), are available. Even if detailed earthquake information from some centuries including historic and paleoearthquakes are given, only very few, namely the largest events, will contribute at all to the estimation of m(max), and this results in unacceptably high uncertainties. As a consequence, estimators of m(max) in a fault zone, which are based solely on earthquake-related information from this region, have to be dismissed. Y1 - 2016 U6 - https://doi.org/10.1785/0220150176 SN - 0895-0695 SN - 1938-2057 VL - 87 SP - 132 EP - 137 PB - Seismological Society of America CY - Albany ER - TY - JOUR A1 - Schroeter, M-A A1 - Ritter, M. A1 - Holschneider, Matthias A1 - Sturm, H. T1 - Enhanced DySEM imaging of cantilever motion using artificial structures patterned by focused ion beam techniques JF - Journal of micromechanics and microengineering N2 - We use a dynamic scanning electron microscope (DySEM) to map the spatial distribution of the vibration of a cantilever beam. The DySEM measurements are based on variations of the local secondary electron signal within the imaging electron beam diameter during an oscillation period of the cantilever. For this reason, the surface of a cantilever without topography or material variation does not allow any conclusions about the spatial distribution of vibration due to a lack of dynamic contrast. In order to overcome this limitation, artificial structures were added at defined positions on the cantilever surface using focused ion beam lithography patterning. The DySEM signal of such high-contrast structures is strongly improved, hence information about the surface vibration becomes accessible. Simulations of images of the vibrating cantilever have also been performed. The results of the simulation are in good agreement with the experimental images. KW - FIB patterning KW - structured cantilever KW - AFM KW - modal analysis KW - DySEM Y1 - 2016 U6 - https://doi.org/10.1088/0960-1317/26/3/035010 SN - 0960-1317 SN - 1361-6439 VL - 26 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Bärenzung, Julien A1 - Holschneider, Matthias A1 - Lesur, Vincent T1 - constraints JF - Journal of geophysical research : Solid earth N2 - Prior information in ill-posed inverse problem is of critical importance because it is conditioning the posterior solution and its associated variability. The problem of determining the flow evolving at the Earth's core-mantle boundary through magnetic field models derived from satellite or observatory data is no exception to the rule. This study aims to estimate what information can be extracted on the velocity field at the core-mantle boundary, when the frozen flux equation is inverted under very weakly informative, but realistic, prior constraints. Instead of imposing a converging spectrum to the flow, we simply assume that its poloidal and toroidal energy spectra are characterized by power laws. The parameters of the spectra, namely, their magnitudes, and slopes are unknown. The connection between the velocity field, its spectra parameters, and the magnetic field model is established through the Bayesian formulation of the problem. Working in two steps, we determined the time-averaged spectra of the flow within the 2001–2009.5 period, as well as the flow itself and its associated uncertainties in 2005.0. According to the spectra we obtained, we can conclude that the large-scale approximation of the velocity field is not an appropriate assumption within the time window we considered. For the flow itself, we show that although it is dominated by its equatorial symmetric component, it is very unlikely to be perfectly symmetric. We also demonstrate that its geostrophic state is questioned in different locations of the outer core. Y1 - 2016 U6 - https://doi.org/10.1002/2015JB012464 SN - 2169-9313 SN - 2169-9356 VL - 121 SP - 1343 EP - 1364 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Holschneider, Matthias A1 - Lesur, Vincent A1 - Mauerberger, Stefan A1 - Baerenzung, Julien T1 - Correlation-based modeling and separation of geomagnetic field components JF - Journal of geophysical research : Solid earth N2 - We introduce a technique for the modeling and separation of geomagnetic field components that is based on an analysis of their correlation structures alone. The inversion is based on a Bayesian formulation, which allows the computation of uncertainties. The technique allows the incorporation of complex measurement geometries like observatory data in a simple way. We show how our technique is linked to other well-known inversion techniques. A case study based on observational data is given. Y1 - 2016 U6 - https://doi.org/10.1002/2015JB012629 SN - 2169-9313 SN - 2169-9356 VL - 121 SP - 3142 EP - 3160 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Zöller, Gert A1 - Holschneider, Matthias T1 - The Maximum Possible and the Maximum Expected Earthquake Magnitude for Production-Induced Earthquakes at the Gas Field in Groningen, The Netherlands JF - Bulletin of the Seismological Society of America N2 - The Groningen gas field serves as a natural laboratory for production-induced earthquakes, because no earthquakes were observed before the beginning of gas production. Increasing gas production rates resulted in growing earthquake activity and eventually in the occurrence of the 2012M(w) 3.6 Huizinge earthquake. At least since this event, a detailed seismic hazard and risk assessment including estimation of the maximum earthquake magnitude is considered to be necessary to decide on the future gas production. In this short note, we first apply state-of-the-art methods of mathematical statistics to derive confidence intervals for the maximum possible earthquake magnitude m(max). Second, we calculate the maximum expected magnitude M-T in the time between 2016 and 2024 for three assumed gas-production scenarios. Using broadly accepted physical assumptions and 90% confidence level, we suggest a value of m(max) 4.4, whereas M-T varies between 3.9 and 4.3, depending on the production scenario. Y1 - 2016 U6 - https://doi.org/10.1785/0120160220 SN - 0037-1106 SN - 1943-3573 VL - 106 SP - 2917 EP - 2921 PB - Seismological Society of America CY - Albany ER - TY - JOUR A1 - Boehm, Thorsten A1 - Holschneider, Matthias A1 - Lignieres, Frederic A1 - Petit, Pascal A1 - Rainer, Monica A1 - Paletou, Francois A1 - Wade, Gregg A1 - Alecian, Evelyne A1 - Carfantan, Herve A1 - Blazere, Aurore A1 - Mirouh, Giovanni M. T1 - Discovery of starspots on Vega First spectroscopic detection of surface structures on a normal A-type star JF - Astronomy and astrophysics : an international weekly journal N2 - Context. The theoretically studied impact of rapid rotation on stellar evolution needs to be compared with these results of high-resolution spectroscopy-velocimetry observations. Early-type stars present a perfect laboratory for these studies. The prototype A0 star Vega has been extensively monitored in recent years in spectropolarimetry. A weak surface magnetic field was detected, implying that there might be a (still undetected) structured surface. First indications of the presence of small amplitude stellar radial velocity variations have been reported recently, but the confirmation and in-depth study with the highly stabilized spectrograph SOPHIE/OHP was required. Aims. The goal of this article is to present a thorough analysis of the line profile variations and associated estimators in the early-type standard star Vega (A0) in order to reveal potential activity tracers, exoplanet companions, and stellar oscillations. Methods. Vega was monitored in quasi-continuous high-resolution echelle spectroscopy with the highly stabilized velocimeter SOPHIE/OHP. A total of 2588 high signal-to-noise spectra was obtained during 34.7 h on five nights (2 to 6 of August 2012) in high-resolution mode at R = 75 000 and covering the visible domain from 3895 6270 angstrom. For each reduced spectrum, least square deconvolved equivalent photospheric profiles were calculated with a T-eff = 9500 and log g = 4.0 spectral line mask. Several methods were applied to study the dynamic behaviour of the profile variations (evolution of radial velocity, bisectors, vspan, 2D profiles, amongst others). Results. We present the discovery of a spotted stellar surface on an A-type standard star (Vega) with very faint spot amplitudes Delta F/Fc similar to 5 x 10(-4). A rotational modulation of spectral lines with a period of rotation P = 0.68 d has clearly been exhibited, unambiguously confirming the results of previous spectropolarimetric studies. Most of these brightness inhomogeneities seem to be located in lower equatorial latitudes. Either a very thin convective layer can be responsible for magnetic field generation at small amplitudes, or a new mechanism has to be invoked to explain the existence of activity tracing starspots. At this stage it is difficult to disentangle a rotational from a stellar pulsational origin for the existing higher frequency periodic variations. Conclusions. This first strong evidence that standard A-type stars can show surface structures opens a new field of research and ask about a potential link with the recently discovered weak magnetic field discoveries in this category of stars. KW - starspots KW - stars: early-type KW - stars: rotation KW - stars: oscillations KW - stars: individual: Vega KW - asteroseismology Y1 - 2015 U6 - https://doi.org/10.1051/0004-6361/201425425 SN - 0004-6361 SN - 1432-0746 VL - 577 PB - EDP Sciences CY - Les Ulis ER -