TY - JOUR A1 - Roussanova, Elena T1 - Russland ist seit jeher das gelobte Land für Magnetismus gewesen BT - Alexander von Humboldt, Carl Friedrich Gauß und die Erforschung des Erdmagnetismus in Russland JF - Alexander von Humboldt im Netz ; international review for Humboldtian studies N2 - Wegen seiner riesigen Ausdehnung hat Russland bei der wissenschaftlichen Erforschung des Erdmagnetismus bereits im 18. Jahrhundert und erst recht im 19. Jahrhundert eine herausragende Rolle gespielt. Alexander von Humboldts Engagement auf dem Gebiet des Erdmagnetismus, sein organisatorisches und diplomatisches Geschick verhalfen dazu, dass man sich international und vielerorts dem Phänomen des Erdmagnetismus zuwandte. Carl Friedrich Gauß stellte dessen Erforschung in der relativ kurzen Zeit zwischen 1833 und 1839 auf ein ganz neues wissenschaftliches Fundament. Die Pläne Humboldts, die Erde möglichst global physikalisch zu erforschen, und die Pläne von Gauß, die erdmagnetischen Forschungen zentral zu koordinieren, gipfelten 1849 in der Gründung des Physikalischen Hauptobservatoriums in St. Petersburg, das zu jener Zeit eine absolut neuartige Institution darstellte – es war der Erforschung der neuen Disziplin Geophysik gewidmet. An der Spitze dieser Institution stand der russische Physiker Adolph Theodor Kupffer, Mitarbeiter und Kollege sowohl von Humboldt als auch von Gauß. N2 - Russia covers an essential part of the earth’s surface. Hence it played an exceptional role in the scientific investigation of earthmagnetism during the 18th and even more in the 19th century. Through Alexander von Humboldt’s interest in earthmagnetism and his organizational and diplomatic abilities earthmagnetism became an international phenomenon studied at many research institutions. Unlike Humboldt, Carl Friedrich Gauss established a new scientific approach. Humboldt’s aim to globally investigate the physical earth and Gauss’ idea to centralize the measurements led to the foundation of a main physical observatory in St. Petersburg in 1849, which, at its time, was a completely new institution exclusively set up for the new discipline geophysics. The head of this institution became the Russian physicist Adolph Theodor Kupffer, collaborator and colleague as well of Humboldt and of Gauss. KW - Adolph Theodor Kupffer KW - Carl Friedrich Gauß KW - Erdmagnetismus KW - Geophysik KW - Observatorium KW - Russland KW - St. Petersburg Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-57525 SN - 2568-3543 SN - 1617-5239 VL - xii IS - 22 SP - 56 EP - 83 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - THES A1 - Liebs, Göran T1 - Ground penetration radar wave velocities and their uncertainties T1 - Georadar-Wellengeschwindigkeiten mit Fehlerrechnung BT - global inversion of GPR traveltimes to assess uncertainties in CMP velocity models N2 - We develop three new approaches for ground penetration wave velocity calcultaions. The first is based on linear moveout spectra to find the optimum ground wave velocity including uncertainties from multi-offset data gathers. We used synthetic data to illustrate the principles of the method and to investigate uncertainties in ground wave velocity estimates. To demonstrate the applicability of the approach to real data, we analyzed GPR data sets recorded at field sites in Canada over an annual cycle from Steelman & Endres [2010]. The results obtained by this efficient and largely automated procedure agree well with the manual achieved results of Steelman & Endres [2010], derived by a more laborious largely manual analysis strategy. Then we develop a second methodology to global invert reflection traveltimes with a particle swarm optimization approach more precise then conventional spectral NMO-based velocity analysis (e.g., Greaves et al. [1996]). For global optimization, we use particle swarm optimization (PSO; Kennedy & Eberhart [1995]) in the combination with a fast eikonal solver as forward solver (Sethian [1996]; Fomel [1997a]; Sethian & Popovici [1999]). This methodology allows us to generate reliability CMP derived models of subsurface velocities and water content including uncertainties. We test this method with synthetic data to study the behavior of the PSO algorithm. Afterward, We use this method to analyze our field data from a well constrained test site in Horstwalde, Germany. The achieved velocity models from field data showed good agreement to borehole logging and direct-push data (Schmelzbach et al. [2011]) at the same site position. For the third method we implement a global optimization approach also based on PSO to invert direct-arrival traveltimes of VRP data to obtain high resolution 1D velocity models including quantitative estimates of uncertainty. Our intensive tests with several traveltime data sets helped to understand the behavior of PSO algorithm for inversion. Integration of the velocity model to VRP reflection imaging and attenuation model improved the potential of VRP surveying. Using field data, we examine this novel analysis strategy for the development of petrophysical models and the linking between GPR borehole and other logging data to surface GPR reflection data. N2 - Unterschiedliche Verfahren zur Ermittlung von Georadar-Wellengeschwindigkeiten wurden entwickelt und erfolgreich angewendet. Für die Verfahren wurden statistische Methoden und Schwarmintelligenz-Algorithmen benutzt. Es wurde gezeigt, dass die neuen Verfahren schneller, präziser und besser reproduzierbare Ergebnisse für Georadar-Wellengeschwindigkeit erzielen als herkömmliche Verfahren. Mit verbesserten Werten der Georadar-Wellengeschwindigkeit lassen sich die verzerrten dreidimensionalen Abbilder der obersten zehn Meter des Untergrundes, welche sich mit Georadar-Daten erzeugen lassen, korrigieren. In diesen korrigierten Abbildern sind dann realistische Tiefen von Schichten oder Objekten im Untergrund besser messbar. Außerdem verbessern präzisere Wellengeschwindigkeiten die Bestimmung von Bodenparametern, wie Wassergehalt oder Tonanteil. Die präsentierten Verfahren erlauben eine quantitative Angabe von Fehlern der bestimmten Wellengeschwindigkeit und der daraus folgenden Tiefen und Bodenparametern im Untergrund. Die Vorteile dieser neu entwickelten Verfahren zur Charakterisierung des Untergrundes der oberen Meter wurde an Feldbeispielen demonstriert. KW - ground-penetration radar KW - wave velocities KW - global inversion KW - particle swarm optimisation KW - soil water content KW - subsurface KW - geophyics KW - Georadar KW - Wellengeschwindigkeit KW - globale Inversion KW - Partikel Swarm Optimierung KW - Bodenwassergehalt KW - Untergrund KW - Geophysik Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-436807 ER - TY - THES A1 - Lehmann, Lukas T1 - Performance Test von Phasenpickern T1 - Performance test of phase pickers N2 - Die genauen Einsatzzeiten seismischer P-Phasen von Erdbeben werden in SeisComP3 und anderen Auswerteprogrammen standardmäßig und in Echtzeit automatisch bestimmt. S-Phasen stellen dagegen eine weit größere Herausforderung dar. Nur mit genauen Picks der P- bzw. S-Phasen können die Erdbebenlokationen korrekt und stabil bestimmt werden. Darum besteht erhebliches Interesse, diese mit hoher Genauigkeit zu bestimmen. Das Ziel der vorliegenden Bachelorarbeit war es, vier verschiedene, bereits vorhandene S-Phasenpicker auf ausgewählte Parameter optimal zu konfigurieren, auf Testdaten anzuwenden und deren Leistungsfähigkeit objektiv zu bewerten. Dazu wurden ein S-Picker (S-L2) aus dem OpenSource SeisComp3-Programmpaket, zwei S-Picker (S-AIC, S-AIC-V) als kommerzielles Modul der Firma gempa GmbH für SeisComP3 und ein S-Picker (Frequenzband) aus dem OpenSource PhasePaPy-Paket ausgewählt. Die Bewertung erfolgte durch Vergleich automatischer Picks mit manuell bestimmten Einsatzzeiten. Alle vier Picker wurden separat konfiguriert und auf drei verschiedene Datensätze von Erdbeben in N-Chile und im Vogtland, Deutschland, angewandt. Dazu wurden regional bzw. lokal typische Erdbeben zufällig ausgewählt und die P- und S-Phasen manuell bestimmt. Mit den zu testenden S-Pickeralgorithmen wurden dieselben Daten durchsucht und die Picks automatisch bestimmt. Die Konfigurationen der Picker wurden gleichzeitig automatisch und objektiv durch iterative Anpassung optimiert. Ein neu erstelltes Bewertungssystem vergleicht die manuellen und die automatisch gefundenen S-Picks anhand von definierten Qualitätsfaktoren. Die Qualitätsfaktoren sind: der Mittelwert und die Standardabweichung der zeitlichen Differenzen zwischen den S-Picks, die Anzahl an übereinstimmenden S-Picks, die Prozentangaben über mögliche S-Picks und die benötigt Rechenzeit. Die objektive Bewertung erfolgte anhand eines Scores. Der Scorewert ergibt sich aus der gewichteten Summe folgender normierter Qualitätsfaktoren: Standardabweichung (20%), Mittelwert (20%) und Prozentangabe über mögliche S-Picks (60%). Konfigurationen mit hohem Score werden bevorzugt. Die bevorzugten Konfigurationen der verschiedenen Picker wurden miteinander verglichen, um den am besten geeigneten S-Pickeralgorithmus zu bestimmen. Allgemein zeigt sich, dass der S-AIC Picker für jeden der drei Datensätze die höchsten Scores und damit die besten Ergebnisse liefert. Dabei wurde für jeden Datensatz ein andere Konfiguration der Parameter des S-AIC Pickers als die am besten geeignete bezeichnet. Daher ist für jede Erdbebenregion eine andere Konfigurationen erforderlich, um optimale Ergebnisse mit diesem S-Picker zu bekommen. N2 - The exact onset times of seismic P phases are automatically determined in analysis programs like SeisComP3 by default and in real-time. However the S phases are more challenging. To get an exact and stable result for earthquake location determination both, the P and the S phases, have to be picked accurate. The aim of this bachelor thesis was to optimize four different existing S phase pickers for different parameters, to apply these to data and to evaluate the results objectively. The chosen pickers were one S picker (S-L2) from the OpenSource SeisComp3 program package, two S pickers (S-AIC, S-AIC-V) as commercial module of the company gempa GmbH for SeisComp3 and one S picker (Frequency Band) from the OpenSource PhasePaPy package. The evaluation was based on the comparison between automatic and manually determined onset times. All those four pickers were configured separately and applied to three different records of earthquakes from northern Chile and Vogtland, Germany. The data sets consist of regional and/or local typical randomly chosen earthquakes for which both P and S phases were manually picked. The tested S pick algorithms determined the automatic picks for the exact same records. A newly created evaluation system compares the manual and the automatic S picks for predefined quality factors. These factors are: the mean and the standard deviation of the pick time differences, the number of corresponding S picks, the rates of possible S picks and the needed calculation time. The objectively rating was based on a score value. This value is calculated by a weighted sum of the following normalized quality factors: standard deviation (20%), mean (20%) and the rate of possible S picks (60%). The higher the score the better the configuration. The best configurations of the tested S pickers were compared to find the best algorithm, dataset wise. In general it is shown that the S-AIC picker has for each data set the highest score value and as a result it is named the best picker algorithm. But for each data set the picker has a different set of parameters which were determined as the best ones. For that reason there is a need to change the configuration for every earthquake location and field of application to find the best results with the S-AIC picker algorithm. KW - Geophysik KW - Seismologie KW - Erdbeben KW - Phasenpicker KW - S-Phase KW - SeisComP3 KW - PhasePaPy KW - geophysics KW - seismology KW - earthquake KW - phasepicker KW - S Phase KW - SeisComP3 KW - PhasePaPy KW - Picker KW - picker KW - Einsatzzeiten KW - onset times Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-401993 ER - TY - THES A1 - Schellbach, Konrad T1 - Erdbeben in der Geschichtsschreibung des Früh- und Hochmittelalters BT - Ursprung, Verständnis und Anwendung einer spezifisch mittelalterlichen Traditionsbildung T2 - Historical catastrophe studies T2 - Historische Katastrophenforschung N2 - "Terrae motus factus est magnus". In diesen und ähnlichen Worten erinnern mittelalterliche Geschichtsschreiber stets an das verspürte Eintreten von Erdbeben. Für die ereignisgeschichtliche Rekonstruktion der historischen Seismizität besitzt das Verständnis, dieser seit dem Frühmittelalter zunehmend standardisiert gebrauchten Narrativen, einen hohen Wert. Daher ist es wichtig, mit den bislang nahezu unerkannt geblieben Intentionen, Vorstellungsstrukturen und Argumentationsstrategien früh- und hochmittelalterlicher Geschichtsschreiber bekannt zu werden. Ausgehend von den antiken Ursprüngen ermittelt diese Arbeit die Bandbreite einer auf "terrae motus" aufbauenden, spezifisch mittelalterlichen Traditionsbildung und setzt sie in den Kontext zum Wissens- und Erfahrungshorizont früh- und hochmittelalterlicher Gelehrter. Erdbeben besaßen ein außerordentliches hermeneutisches Potential für das mittelalterliche Weltverständnis. Somit sind mittelalterliche Erdbebenbeschreibungen hinsichtlich ihrer deskriptiven Qualität und argumentativen Wertigkeit verschieden. Die Historiographie- und Ideengeschichte sowie die seismologische Parametrisierung von mittelalterlichen Erdbeben wird von diesem Wissen gleichermaßen profitieren. KW - Deutschland KW - Erdbeben KW - Geschichtsschreibung KW - Mediävistik KW - Theologie KW - Philosophie KW - Seismologie KW - Geophysik KW - Historische Seismologie KW - Katastrophenforschung Y1 - 2021 SN - 978-3-11-061998-0 SN - 978-3-11-062077-1 SN - 978-3-11-061982-9 U6 - https://doi.org/10.1515/9783110620771 SN - 2699-7231 SN - 2699-7223 PB - de Gruyter CY - Berlin ER -