TY - THES A1 - Rettig, Hartmut Arnim T1 - Methoden zur Synthese von definierten bioorganisch-synthetischen Blockcopolymeren T1 - Pathways to defined bioorganic-synthetic conjugates N2 - Bioorganisch-synthetische Blockcopolymere sind sowohl für die Materialwissenschaft als auch für die Medizin hochinteressant. Diese Arbeit beschäftigte sich mit neuen Synthesewegen für die Herstellung dieser Blockcopolymere. Zunächst wurde der klassische Ansatz zur Herstellung eines Blockcopolymers über die Kupplung der beiden Segmente aufgegriffen. Hierzu wurde eine Methode zur Synthese von selektiv säureendfunktionalisierten Polyacrylaten mittels einer terminalen Benzylesterschutzgruppe vorgestellt. Für die Herstellung von bioorganisch-synthetischen Blockcopolymeren mit einem größeren Polymersegment wurde daher ein anderer Syntheseansatz entwickelt. Dieser geht von einem funktionalisierten Oligopeptid aus, an dem durch Polymerisation das synthetische Segment aufgebaut wird. Der Aufbau erfolgte durch kontrolliert radikalische Polymerisation, um ein möglichst definiertes Segment zu erhalten. Zunächst wurde eine Synthese von Oligopeptid-Makroinitiatoren für die ATRP-Polymerisation durchgeführt. Es konnte gezeigt werden, dass in geeigneten polaren Lösungsmitteln (DMSO, DMF) eine Polymerisation mit dem ATRP-Oligopeptid-Makroinitiator erfolgreich ist. Allerdings treten während der Polymerisation Wechselwirkungen zwischen dem Katalysator und dem Oligopeptid auf. Eine Alternative bietet die RAFT-Polymerisation, da sie ohne einen Katalysator durchgeführt wird. Es gelang ausgehend von dem Oligopeptid-ATRP-Makroinitiator den Überträger herzustellen. Die RAFT-Polymerisation mit einem Oligopeptidüberträger stellt eine wichtige Methode für die Herstellung von bioorganisch-synthetischen Blockcopolymeren dar. Sie besitzt eine hohe Toleranz gegenüber funktionellen Gruppen. Die so hergestellten Blockcopolymere sind frei von Verunreinigungen, wie z.B. Übergangsmetallen. Dabei läßt sich das Molekulargewicht des synthetischen Blocks bei einer Polydispersität um 1,2 gut kontrollieren. N2 - Bioorganic – synthetic conjugates have received a lot of attention concerning their potentials in the fields of material science, pharmaceutics and medicine. This work presents new synthetic routes to these conjugates. For conjugates consisting of small blocks an approach via coupling is possible. For larger blocks it was necessary to develop a different approach via controlled radical polymerisation methods. To begin with oligopeptide macroinitiators for Atom Transfer Radical Polymerisation were synthesized and successful applied in polymerization. The reaction conditions were optimized by studying the polymerisation kinetics. Although the polymerization results in well-defined products, interactions between the copper catalyst and the peptide are evident and cannot be suppressed. To overcome this problem the polymerization method had to be changed. Therefore oligopeptide-based reversible addition fragmentation transfer (RAFT) agents were developed. Well-defined conjugates comprising sequenz-defined peptides and synthetic polymers could be accessed by applying RAFT polymerization techniques in combination with the peptide macrotransfer agents. Polymerization reactions of n-butyl acrylate were performed in solution, yielding peptide-polymer conjugates with controllable molecular weight and low polydispersities. KW - ATRP KW - ATRP KW - RAFT KW - Blockcopolymer KW - Peptid KW - Makroinitiator KW - ATRP KW - RAFT KW - conjugates KW - peptide Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-10293 ER - TY - THES A1 - Pfeifer, Sebastian T1 - Neue Ansätze zur Monomersequenzkontrolle in synthetischen Polymeren T1 - New approaches for monomer sequence control in synthetic polymers N2 - Von der Natur geschaffene Polymere faszinieren Polymerforscher durch ihre spezielle auf eine bestimmte Aufgabe ausgerichtete Funktionalität. Diese ergibt sich aus ihrer Bausteinabfolge uber die Ausbildung von Uberstrukturen. Dazu zählen zum Beispiel Proteine (Eiweiße), aus deren Gestalt sich wichtige Eigenschaften ergeben. Diese Struktureigenschaftsbeziehung gilt ebenso für funktionelle synthetische Makromoleküle. Demzufolge kann die Kontrolle der Monomersequenz in Polymeren bedeutend für die resultierende Form des Polymermoleküls sein. Obwohl die Synthese von synthetischen Polymeren mit der Komplexität und der Größe von Proteinen in absehbarer Zeit wahrscheinlich nicht gelingen wird, können wir von der Natur lernen, um neuartige Polymermaterialien mit definierten Strukturen (Sequenzen) zu synthetisieren. Deshalb ist die Entwicklung neuer und besserer Techniken zur Strukturkontrolle von großem Interesse für die Synthese von Makromolekülen, die perfekt auf ihre Funktion zugeschnitten sind. Im Gegensatz zu der Anzahl fortgeschrittener Synthesestrategien zum Design aus- gefallener Polymerarchitekturen – wie zum Beispiel Sterne oder baumartige Polymere (Dendrimere) – gibt es vergleichsweise wenig Ansätze zur echten Sequenzkontrolle in synthetischen Polymeren. Diese Arbeit stellt zwei unterschiedliche Techniken vor, mit denen die Monomersequenz innerhalb eines Polymers kontrolliert werden kann. Gerade bei den großtechnisch bedeutsamen radikalischen Polymerisationen ist die Sequenzkontrolle schwierig, weil die chemischen Bausteine (Monomere) sehr reaktiv sind. Im ersten Teil dieser Arbeit werden die Eigenschaften zweier Monomere (Styrol und N-substituiertes Maleinimid) geschickt ausgenutzt, um in eine Styrolkette definierte und lokal scharf abgegrenzte Funktionssequenzen einzubauen. Uber eine kontrollierte radikalische Polymerisationsmethode (ATRP) wurden in einer Ein-Topf-Synthese über das N-substituierte Maleinimid chemische Funktionen an einer beliebigen Stelle der Polystyrolkette eingebaut. Es gelang ebenfalls, vier unterschiedliche Funktionen in einer vorgegebenen Sequenz in die Polymerkette einzubauen. Diese Technik wurde an zwanzig verschiedenen N-substituierten Maleinimiden getestet, die meisten konnten erfolgreich in die Polymerkette integriert werden. In dem zweiten in dieser Arbeit vorgestellten Ansatz zur Sequenzkontrolle, wurde der schrittweise Aufbau eines Oligomers aus hydrophoben und hydrophilen Segmenten (ω-Alkin-Carbonsäure bzw. α-Amin-ω-Azid-Oligoethylenglycol) an einem löslichen Polymerträger durchgeführt. Das Oligomer konnte durch die geschickte Auswahl der Verknüpfungsreaktionen ohne Schutzgruppenstrategie synthetisiert werden. Der lösliche Polymerträger aus Polystyrol wurde mittels ATRP selbst synthetisiert. Dazu wurde ein Startreagenz (Initiator) entwickelt, das in der Mitte einen säurelabilen Linker, auf der einen Seite die initiierende Einheit und auf der anderen die Ankergruppe für die Anbindung des ersten Segments trägt. Der lösliche Polymerträger ermöglichte einerseits die schrittweise Synthese in Lösung. Andererseits konnten überschüssige Reagenzien und Nebenprodukte zwischen den Reaktionsschritten durch Fällung in einem Nicht-Lösungsmittel einfach abgetrennt werden. Der Linker ermöglichte die Abtrennung des Oligomers aus jeweils drei hydrophoben und hydrophilen Einheiten nach der Synthese. N2 - Polymer scientists are impressed by polymers created by nature. This is caused by their structure which is aimed to fulfill very special functions. The structure is primary built by sequential covalent linking of building units. Secondly, supramolecular aggregation leads to three-dimensional alignment. The sequence of the building blocks has a high influence on the higher molecular arrangement. Proteins are only one example for supramolecular structures which have special functions because of their supramolecular arrangement. This structure-property relationship is also possible for synthetic polymers. For this reason the control of monomer sequences in synthtic polymers is just as important for the resulting structure of a synthetic polymer molecule. Even though the synthesis of polymers with complex strucures and sizes as in nature is impossible in near future. But the development of new and better techniques for sequence control in synthetic polymers is of high importance to create well defined macromolecular structures which are tailor-made for their function. In contrast to a lot of advanced synthethis strategies for the design of complex polymer architechtures (e.g. brushes, stars, or dendrimers) their are less approaches for a monomer sequence control in synthetic polymers. This work presents two different techniques for controlling the monomer sequence inside a polymer. Especially in technologically significant radical polymerization it is difficult to control the monomer sequence because radical species are very reactive and the addition of a monomer to the radical function is not selective. The first approach makes use of the properties of two monomers (styrene and N-substituted maleimides) to add chemical funtions locally inside a polystyrene chain. By addition of N-functionalized maleimides during the polymerization of styrene chemical functions could be added at any desired position inside the polystyrene chain. This technique was tested on 20 different N-substituted maleimides. Most of them were incorporated successfully into the polymer chain. The second monomer sequence control approach is a stepwise synthesis of an oligomer made of short alternating hydrophobic and hydrophilic segments on a soluble polymer support. Two building blocks were used: ω-alkyne carboxylic acid (A-B) and α-amine-ω-azide oligoethylene glycol (C-D). The linking of the segments was done by applying two very efficient chemical reactions, namely 1,3-dipolar cycloaddition of terminal alkynes (A) and azides (D) and amidification of carboxylic acids (B) with primary amines (C). These two reactions proceed chemoselectively in an ABCD multifunctional mixture without a protection chemistry strategy. The polystyrene support was synthesized by atom transfer radical polymerization (ATRP) in the presence of an azido-functionalized ATRP initiator containing a labile p-alkoxybenzyl ester linker. Depending on the choise of solvent, the soluble polymer support was used in solution during the coupling reactions or was precipitated for an easy removal of excessive reagents and by-products. The acid-labile linker could be cleaved by trifluoroacetic acid treatment to obtain a hydrophilic/hydrophobic block copolymer. KW - ATRP KW - Copolymerisation KW - Flüssigphasensynthese KW - WANG-Linker KW - Klick-Chemie KW - ATRP KW - copolymerization KW - liquid phase synthesis KW - WANG-linker KW - click chemistry Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-51385 ER -