TY - JOUR A1 - Cherchneff, I. T1 - Dust formation in carbon-rich Wolf-Rayet colliding winds JF - Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.–5. June 2015 N2 - Carbon-rich Wolf-Rayet stars are efficient carbon dust makers. Despite the strong evidence for dust formation in these objects provided by infrared thermal emission from dust, the routes to nucleation and condensation and the physical conditions required for dust production are still poorly understood. We discuss here the potential routes to carbon dust and the possible locations conducive to dust formation in the colliding winds of WC binaries. Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-88177 SP - 269 EP - 274 ER - TY - JOUR A1 - Guerrero, Martín A. T1 - Planetary nebulae and Their Central Stars in X-rays JF - Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.–5. June 2015 N2 - Two types of X-ray sources are mostly found in planetary nebulae (PNe): point sources at their central stars and diffuse emission inside hot bubbles. Here we describe these two types of sources based on the most recent observations obtained in the framework of the Chandra Planetary Nebula Survey, ChanPlaNS, an X-ray survey targeting a volume-limited sample of PNe. Diffuse X-ray emission is found preferentially in young PNe with sharp, closed inner shells. Point sources of X-ray emission at the central stars reveal magnetically active binary companions and shock-in stellar winds. Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-88160 SP - 263 EP - 266 ER - TY - JOUR A1 - Miszalski, B. A1 - Manick, R. A1 - McBride, V. T1 - Post-common-envelope Wolf-Rayet central stars of planetary nebulae JF - Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.–5. June 2015 N2 - Nearly 50 post-common-envelope (post-CE) close binary central stars of planetary nebulae (CSPNe) are now known. Most contain either main sequence or white dwarf (WD) companions that orbit the WD primary in around 0.1–1.0 days. Only PN G222.8–04.2 and NGC 5189 have post-CE CSPNe with a Wolf-Rayet star primary (denoted [WR]), the low-mass analogues of massive Wolf-Rayet stars. It is not well understood how H-deficient [WR] CSPNe form, even though they are relatively common, appearing in over 100 PNe. The discovery and characterisation of post-CE [WR] CSPNe is essential to determine whether proposed binary formation scenarios are feasible to explain this enigmatic class of stars. The existence of post-CE [WR] binaries alone suggests binary mergers are not necessarily a pathway to form [WR] stars. Here we give an overview of the initial results of a radial velocity monitoring programme of [WR] CSPNe to search for new binaries. We discuss the motivation for the survey and the associated strong selection effects. The mass functions determined for PN G222.8–04.2 and NGC 5189, together with literature photometric variability data of other [WR] CSPNe, suggest that of the post-CE [WR] CSPNe yet to be found, most will have WD or subdwarf O/B-type companions in wider orbits than typical post-CE CSPNe (several days or months c.f. less than a day). Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-88156 SP - 259 EP - 262 ER - TY - JOUR A1 - Todt, Helge Tobias A1 - Hamann, Wolf-Rainer T1 - Wolf-Rayet central stars of planetary nebulae JF - Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.–5. June 2015 N2 - A significant number of the central stars of planetary nebulae (CSPNe) are hydrogen-deficient, showing a chemical composition of helium, carbon, and oxygen. Most of them exhibit Wolf-Rayet-like emission line spectra, similar to those of the massive WC Pop I stars, and are therefore classified as of spectral type [WC]. In the last years, CSPNe of other Wolf-Rayet spectral subtypes have been identified, namely PB 8, which is of spectral type [WN/C], and IC 4663 and Abell 48, which are of spectral type [WN]. We review spectral analyses of Wolf-Rayet type central stars of different evolutionary stages and discuss the results in the context of stellar evolution. Especially we consider the question of a common evolutionary channel for [WC] stars. The constraints on the formation of [WN] or [WC/N] subtype stars will also be addressed. Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-88147 SP - 253 EP - 258 ER - TY - JOUR A1 - Dessart, L. T1 - Wolf-Rayet stars as supernova progenitors JF - Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.–5. June 2015 N2 - In this review, I discuss the suitability of massive star progenitors, evolved in isolation or in interacting binaries, for the production of observed supernovae (SNe) IIb, Ib, Ic. These SN types can be explained through variations in composition. The critical need of non-thermal effects to produce He I lines favours low-mass He-rich ejecta (in which ^56 Ni can be more easily mixed with He) for the production of SNe IIb/Ib, which thus may arise preferentially from moderate-mass donors in interacting binaries. SNe Ic may instead arise from higher mass progenitors, He-poor or not, because their larger CO cores prevent efficient non-thermal excitation of He i lines. However, current single star evolution models tend to produce Wolf-Rayet (WR) stars at death that have a final mass of > 10 M⊙. Single WR star explosion models produce ejecta that are too massive to match the observed light curve widths and rise times of SNe IIb/Ib/Ic, unless their kinetic energy is systematically and far greater than the canonical value of 10^56 erg. Future work is needed to evaluate the energy/mass degeneracy in light curve properties. Alternatively, a greater mass loss during the WR phase, perhaps in the form of eruptions, as evidenced in SNe Ibn, may reduce the final WR mass. If viable, such explosions would nonetheless favour a SN Ic, not a Ib. Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-88133 SP - 245 EP - 250 ER - TY - JOUR A1 - Langer, N. A1 - Sanyal, D. A1 - Grassitelli, L. A1 - Szésci, D. T1 - The stellar Eddington limit JF - Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.–5. June 2015 N2 - It is often assumed that when stars reach their Eddington limit, strong outflows are initiated, and that this happens only for extreme stellar masses. We discuss here that in models of up to 500 M⊙, the Eddington limit is never reached at the stellar surface. Instead, we argue that the Eddington limit is reached inside the stellar envelope in hydrogen-rich stars above ∼ 30 M⊙ and in Wolf-Rayet stars above ∼ 7 M⊙, with drastic effects for their struture and stability. Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-88121 SP - 241 EP - 244 ER - TY - JOUR A1 - Groh, J. H. T1 - The end stages of massive star evolution BT - WR stars as SN Ibc progenitors JF - Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.–5. June 2015 N2 - The morphological appearance of massive stars across their post-Main Sequence evolution and before the SN event is very uncertain, both from a theoretical and observational perspective. We recently developed coupled stellar evolution and atmospheric modeling of stars done with the Geneva and CMFGEN codes, for initial masses between 9 and 120 M⊙. We are able to predict the observables such as the high-resolution spectrum and broadband photometry. Here I discuss how the spectrum of a massive star changes across its evolution and before death, with focus on the WR stage. Our models indicate that single stars with initial masses larger than 30 M⊙ end their lives as WR stars. Depending on rotation, the spectrum of the star can either be that of a WN or WO subtype at the pre-SN stage. Our models allow, for the first time, direct comparison between predictions from stellar evolution models and observations of SN progenitors. Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-88115 SP - 237 EP - 240 ER - TY - JOUR A1 - Wofford, A. A1 - Charlot, S. A1 - Eldridge, J. J. T1 - Properties of LEGUS Clusters Obtained with Different Massive-Star Evolutionary Tracks JF - Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.–5. June 2015 N2 - We compute spectral libraries for populations of coeval stars using state-of-the-art massive-star evolutionary tracks that account for different astrophysics including rotation and close-binarity. Our synthetic spectra account for stellar and nebular contributions. We use our models to obtain E(B – V ), age, and mass for six clusters in spiral galaxy NGC 1566, which have ages of < 50 Myr and masses of > 5 x 104M⊙ according to standard models. NGC 1566 was observed from the NUV to the I-band as part of the imaging Treasury HST program LEGUS: Legacy Extragalactic UV Survey. We aim to establish i) if the models provide reasonable fits to the data, ii) how well the models and photometry are able to constrain the cluster properties, and iii) how different the properties obtained with different models are. Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-88109 SP - 233 EP - 236 ER - TY - JOUR A1 - Georgy, C. A1 - Ekström, S. A1 - Hirschi, R. A1 - Meynet, G. A1 - Groh, J. H. A1 - Eggenberger, P. T1 - Wolf-Rayet stars as an evolved stage of stellar life JF - Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.–5. June 2015 N2 - Wolf-Rayet (WR) stars, as they are advanced stages of the life of massive stars, provide a good test for various physical processes involved in the modelling of massive stars, such as rotation and mass loss. In this paper, we show the outputs of the latest grids of single massive stars computed with the Geneva stellar evolution code, and compare them with some observations. We present a short discussion on the shortcomings of single stars models and we also briefly discuss the impact of binarity on the WR populations. Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-88097 SP - 229 EP - 232 ER - TY - JOUR A1 - Munoz, M. A1 - Moffat, Anthony F. J. A1 - Hill, G. M. A1 - Richardson, N. D. A1 - Pablo, H. T1 - The missing Wolf-Rayet X-ray binary systems JF - Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.–5. June 2015 N2 - We investigate the rarity of the Wolf-Rayet X-ray binaries (WRXRBs) in contrast to their predecessors, the high mass X-ray binaries (HMXRBs). Recent studies suggest that common envelope (CE) mergers during the evolution of a HMXRBs may be responsible (Linden et al. 2012). We conduct a binary population synthesis to generate a population of HMXRBs mimicking the Galactic sample and vary the efficiency parameter during the CE phase to match the current WRXRB to HMXRB ratio. We find that ∼50% of systems must merge to match observational constraints. Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-88082 SP - 225 EP - 228 ER - TY - JOUR A1 - Vanbeveren, D. A1 - Mennekens, N. T1 - Massive star population synthesis with binaries JF - Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.–5. June 2015 N2 - We first give a short historical overview with some key facts of massive star population synthesis with binaries. We then discuss binary population codes and focus on two ingredients which are important for massive star population synthesis and which may be different in different codes. Population simulations with binaries is the third part where we consider the initial massive binary frequency, the RSG/WR and WC/WN and SNII/SNIbc number ratio's, the probable initial rotational velocity distribution of massive stars. Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-88071 SP - 217 EP - 224 ER - TY - JOUR A1 - Sanyal, D. A1 - Moriya, T. J. A1 - Langer, N. T1 - Envelope inflation in Wolf-Rayet stars and extended supernova shock breakout signals JF - Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.–5. June 2015 N2 - Massive, luminous stars reaching the Eddington limit in their interiors develop very dilute, extended envelopes. This effect is called envelope inflation. If the progenitors of Type Ib/c supernovae, which are believed to be Wolf-Rayet (WR) stars, have inflated envelopes then the shock breakout signals diffuse in them and can extend their rise times significantly. We show that our inflated, hydrogen-free, WR stellar models with a radius of ∼R⊙ can have shock breakout signals longer than ∼ 60 s. The puzzlingly long shock breakout signal observed in the Type Ib SN 2008D can be explained by an inflated progenitor envelope, and more such events might argue in favour of existence of inflated envelopes in general. Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-88062 SP - 213 EP - 216 ER - TY - JOUR A1 - Shacham, T. A1 - Idan, I. A1 - Shaviv, N. J. T1 - A new mechanism for long long-term pulsations of hot stars? JF - Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.–5. June 2015 N2 - We suggest several ideas which when combined could lead to a new mechanism for long-term pulsations of very hot and luminous stars. These involve the interplay between convection, radiation, atmospheric clumping and winds, which collectively feed back to stellar expansion and contraction. We discuss these ideas and point out the future work required in order to fill in the blanks. Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-88058 SP - 209 EP - 212 ER - TY - JOUR A1 - Pablo, H. A1 - Moffat, Anthony F. J. T1 - WR Time Series Photometry BT - A Forest of Possibilities JF - Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.–5. June 2015 N2 - We take a comprehensive look at Wolf Rayet photometric variability using the MOST satellite. This sample, consisting of 6 WR stars and 6 WC stars defies all typical photometric analysis. We do, however, confirm the presence of unusual periodic signals resembling sawtooth waves which are present in 11 out of 12 stars in this sample. Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-88031 SP - 205 EP - 208 ER - TY - JOUR A1 - Grassitelli, L. A1 - Langer, N. A1 - Sanyal, D. A1 - Fossati, Luca A1 - Bestenlehner, J. M. T1 - Instabilities in the envelope of Wolf-Rayet stars JF - Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.–5. June 2015 N2 - Wolf-Rayet stars are very hot stars close to the Eddington limit. In the conditions encountered in their radiation pressure dominated outer layers several instabilities are expected to arise. These instabilities could influence both the dynamic of their optically thick winds and the observed spectral lines introducing small and large scale variability. We investigate the conditions in the convective envelopes of our helium star models and relate them to the appearance of a high number of stochastic density inhomogeneities, i.e. clumping in the optically thick wind. We also investigate the pulsational stability of these envelope, considering the effect of the high stellar wind mass loss rates. Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-88024 SP - 201 EP - 204 ER - TY - JOUR A1 - McClelland, L. A. S. A1 - Eldridge, J. J. T1 - Helium stars BT - Towards an understanding of Wolf–Rayet evolution JF - Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.–5. June 2015 N2 - There are outstanding problems in trying to reproduce the observed nature of Wolf–Rayet stars from theoretical stellar models. We have investigated the effects of uncertainties, such as composition and mass-loss rate, on the evolution and structure of Wolf–Rayet stars and their lower mass brethren. We find that the normal Conti scenario needs to be altered, with different WR types being due to different initial masses as well as different stages of evolution. Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-88010 SP - 197 EP - 200 ER - TY - JOUR A1 - Shenar, Tomer A1 - Hamann, Wolf-Rainer A1 - Todt, Helge Tobias T1 - The impact of rotation on the line profiles of Wolf-Rayet stars JF - Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.–5. June 2015 N2 - The distribution of angular momentum in massive stars is a critical component of their evolution, yet not much is known on the rotation velocities of Wolf-Rayet stars. There are various indications that rapidly rotating Wolf-Rayet stars should exist. Unfortunately, due to their expanding atmospheres, rotational velocities of Wolf-Rayet stars are very difficult to measure. In this work, we model the effects of rotation on the atmospheres of Wolf-Rayet stars by implementing a 3D integration scheme in the PoWR code. We further investigate whether the peculiar spectra of five Wolf-Rayet stars may imply rapid rotation, infer the corresponding rotation parameters, and discuss the implications of our results. We find that rotation helps to reproduce the unique spectra analyzed here. However, if rotation is indeed involved, the inferred rotational velocities at the stellar surface are large (∼ 200 km/s), and the implied co-rotation radii (∼ 10R∗) suggest the existence of very strong photospheric magnetic fields (∼ 20 kG). Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-88008 SP - 193 EP - 196 ER - TY - JOUR A1 - Szécsi, D. A1 - Langer, N. A1 - Sanyal, D. A1 - Evans, C. J. A1 - Bestenlehner, J. M. A1 - Raucq, F. T1 - Do rapidly-rotating massive stars at low metallicity form Wolf–Rayet stars? JF - Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.–5. June 2015 N2 - The evolution of massive stars is strongly influenced by their initial chemical composition. We have computed rapidly-rotating massive star models with low metallicity (∼1/50 Z⊙) that evolve chemically homogeneously and have optically-thin winds during the main sequence evolution. These luminous and hot stars are predicted to emit intense mid- and far-UV radiation, but without the broad emission lines that characterize WR stars with optically-thick winds. We show that such Transparent Wind UV-Intense (TWUIN) stars may be responsible for the high number of He ii ionizing photons observed in metal-poor dwarf galaxies, such as IZw 18. We find that these TWUIN stars are possible long-duration gamma-ray burst progenitors. Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-87997 SP - 189 EP - 192 ER - TY - JOUR A1 - Meynet, G. A1 - Georgy, C. A1 - Maeder, A. A1 - Ekström, S. A1 - Groh, J. H. A1 - Barblan, F. A1 - Song, H. F. A1 - Eggenberger, P. T1 - Physics of massive stars relevant for the modeling of Wolf-Rayet populations JF - Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.–5. June 2015 N2 - Key physical ingredients governing the evolution of massive stars are mass losses, convection and mixing in radiative zones. These effects are important both in the frame of single and close binary evolution. The present paper addresses two points: 1) the differences between two families of rotating models, i.e. the family of models computed with and without an efficient transport of angular momentum in radiative zones; 2) The impact of the mass losses in single and in close binary models. Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-87971 SP - 183 EP - 188 ER - TY - JOUR A1 - Eldridge, J. J. A1 - McClelland, L. A. S. A1 - Xiao, L. A1 - Stanway, E. R. A1 - Bray, J. T1 - The importance of getting single-star and binary physics correct JF - Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.–5. June 2015 N2 - We discuss the uncertainties that need to be considered when creating numerical models of WR stars. We pay close attention to inflation and duplicity of the stellar models, highlighting several observational tests that show these are key to understanding WR stellar populations. Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-87966 SP - 177 EP - 182 ER -