TY - JOUR A1 - Beauval, CĂ©line A1 - Hainzl, Sebastian A1 - Scherbaum, Frank T1 - Probabilistic seismic hazard estimation in low-seismicity regions considering non-Poissonian seismic occurrence N2 - In low-seismicity regions, such as France or Germany, the estimation of probabilistic seismic hazard must cope with the difficult identification of active faults and with the low amount of seismic data available. Since the probabilistic hazard method was initiated, most studies assume a Poissonian occurrence of earthquakes. Here we propose a method that enables the inclusion of time and space dependences between earthquakes into the probabilistic estimation of hazard. Combining the seismicity model Epidemic Type Aftershocks-Sequence (ETAS) with a Monte Carlo technique, aftershocks are naturally accounted for in the hazard determination. The method is applied to the Pyrenees region in Southern France. The impact on hazard of declustering and of the usual assumption that earthquakes occur according to a Poisson process is quantified, showing that aftershocks contribute on average less than 5 per cent to the probabilistic hazard, with an upper bound around 18 per cent Y1 - 2006 UR - http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1365-246X U6 - https://doi.org/10.1111/j.1365-246X.2006.02863.x SN - 0956-540X ER - TY - JOUR A1 - Beauval, Celine A1 - Hainzl, Sebastian A1 - Scherbaum, Frank T1 - The impact of the spatial uniform distribution of seismicity on probabilistic seismic-hazard estimation JF - Bulletin of the Seismological Society of America N2 - The first step in the estimation of probabilistic seismic hazard in a region commonly consists of the definition and characterization of the relevant seismic sources. Because in low-seismicity regions seismicity is often rather diffuse and faults are difficult to identify, large areal source zones are mostly used. The corresponding hypothesis is that seismicity is uniformly distributed inside each areal seismic source zone. In this study, the impact of this hypothesis on the probabilistic hazard estimation is quantified through the generation of synthetic spatial seismicity distributions. Fractal seismicity distributions are generated inside a given source zone and probabilistic hazard is computed for a set of sites located inside this zone. In our study, the impact of the spatial seismicity distribution is defined as the deviation from the hazard value obtained for a spatially uniform seismicity distribution. From the generation of a large number of synthetic distributions, the correlation between the fractal dimension D and the impact is derived. The results show that the assumption of spatially uniform seismicity tends to bias the hazard to higher values. The correlation can be used to determine the systematic biases and uncertainties for hazard estimations in real cases, where the fractal dimension has been determined. We apply the technique in Germany (Cologne area) and in France (Alps). Y1 - 2006 U6 - https://doi.org/10.1785/0120060073 SN - 0037-1106 VL - 96 IS - 6 SP - 2465 EP - 2471 PB - GeoScienceWorld CY - Alexandria, Va. ER - TY - JOUR A1 - Al Atik, Linda A1 - Abrahamson, Norman A. A1 - Bommer, Julian J. A1 - Scherbaum, Frank A1 - Cotton, Fabrice A1 - Kuehn, Nicolas T1 - The variability of ground-motion prediction models and its components Y1 - 2010 UR - http://srl.geoscienceworld.org/ U6 - https://doi.org/10.1785/gssrl.81.5.794 SN - 0895-0695 ER -