TY - JOUR A1 - Kapernaum, Nadia A1 - Lange, Alyna A1 - Ebert, Max A1 - Grunwald, Marco A. A1 - Häge, Christian A1 - Marino, Sebastian A1 - Zens, Anna A1 - Taubert, Andreas A1 - Gießelmann, Frank A1 - Laschat, Sabine T1 - Current topics in ionic liquid crystals JF - ChemPlusChem N2 - Ionic liquid crystals (ILCs), that is, ionic liquids exhibiting mesomorphism, liquid crystalline phases, and anisotropic properties, have received intense attention in the past years. Among others, this is due to their special properties arising from the combination of properties stemming from ionic liquids and from liquid crystalline arrangements. Besides interesting fundamental aspects, ILCs have been claimed to have tremendous application potential that again arises from the combination of properties and architectures that are not accessible otherwise, or at least not accessible easily by other strategies. The current review highlights recent developments in ILC research, starting with some key fundamental aspects. Further subjects covered include the synthesis and variations of modern ILCs, including the specific tuning of their mesomorphic behavior. The review concludes with reflections on some applications that may be within reach for ILCs and finally highlights a few key challenges that must be overcome prior and during true commercialization of ILCs. KW - electrochemistry KW - ionic liquid crystals KW - mesogen mesophases KW - self-assembly KW - X-ray diffraction Y1 - 2021 U6 - https://doi.org/10.1002/cplu.202100397 SN - 2192-6506 VL - 87 IS - 1 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Mehr, Fatemeh Naderi A1 - Grigoriev, Dmitry A1 - Heaton, Rebecca A1 - Baptiste, Joshua A1 - Stace, Anthony J. A1 - Puretskiy, Nikolay A1 - Besley, Elena A1 - Böker, Alexander T1 - Self-assembly behavior of oppositely charged inverse bipatchy microcolloids JF - Small : nano micro N2 - A directed attractive interaction between predefined "patchy" sites on the surfaces of anisotropic microcolloids can provide them with the ability to self-assemble in a controlled manner to build target structures of increased complexity. An important step toward the controlled formation of a desired superstructure is to identify reversible electrostatic interactions between patches which allow them to align with one another. The formation of bipatchy particles with two oppositely charged patches fabricated using sandwich microcontact printing is reported. These particles spontaneously self-aggregate in solution, where a diversity of short and long chains of bipatchy particles with different shapes, such as branched, bent, and linear, are formed. Calculations show that chain formation is driven by a combination of attractive electrostatic interactions between oppositely charged patches and the charge-induced polarization of interacting particles. KW - electrostatic interactions KW - patchy particles KW - polyelectrolyte inks KW - sandwich microcontact printing KW - self-assembly Y1 - 2020 U6 - https://doi.org/10.1002/smll.202000442 SN - 1613-6810 SN - 1613-6829 VL - 16 IS - 14 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Kochovski, Zdravko A1 - Chen, Guosong A1 - Yuan, Jiayin A1 - Lu, Yan T1 - Cryo-Electron microscopy for the study of self-assembled poly(ionic liquid) nanoparticles and protein supramolecular structures JF - Colloid and polymer science : official journal of the Kolloid-Gesellschaft N2 - Cryo-electron microscopy (cryo-EM) is a powerful structure determination technique that is well-suited to the study of protein and polymer self-assembly in solution. In contrast to conventional transmission electron microscopy (TEM) sample preparation, which often times involves drying and staining, the frozen-hydrated sample preparation allows the specimens to be kept and imaged in a state closest to their native one. Here, we give a short overview of the basic principles of Cryo-EM and review our results on applying it to the study of different protein and polymer self-assembled nanostructures. More specifically, we show how we have applied cryo-electron tomography (cryo-ET) to visualize the internal morphology of self-assembled poly(ionic liquid) nanoparticles and cryo-EM single particle analysis (SPA) to determine the three-dimensional (3D) structures of artificial protein microtubules. KW - self-assembly KW - poly(ionic liquid) nanoparticles KW - protein self-assembly KW - cryo-electron microscopy KW - single particle analysis KW - cryo-electron KW - tomography Y1 - 2020 U6 - https://doi.org/10.1007/s00396-020-04657-w SN - 0303-402X SN - 1435-1536 VL - 298 IS - 7 SP - 707 EP - 717 PB - Springer CY - New York ER - TY - THES A1 - Dambowsky, Ina T1 - Bioinspirierte Komposite - Strukturbildung durch Verkleben von Nano- oder Mesokristallen mit funktionalisierten Poly(2-oxazolin)en T1 - Bioinspired composites - structure formation by gluing of nano- or mesocrystals with functionalized poly(2-oxazoline)s N2 - Die herausragenden mechanischen Eigenschaften natürlicher anorganisch-organischer Kompositmaterialien wie Knochen oder Muschelschalen entspringen ihrer hierarchischen Struktur, die von der nano- bis hinauf zur makroskopischen Ebene reicht, und einer kontrollierten Verbindung entlang der Grenzflächen der anorganischen und organischen Komponenten. Ausgehend von diesen Schlüsselprinzipien des biologischen Materialdesigns wurden in dieser Arbeit zwei Konzepte für die bioinspirierte Strukturbildung von Kompositen untersucht, die auf dem Verkleben von Nano- oder Mesokristallen mit funktionalisierten Poly(2-oxazolin)-Blockcopolymeren beruhen sowie deren Potenzial zur Herstellung bioinspirierter selbstorganisierter hierarchischer anorganisch-organischer Verbundstrukturen ohne äußere Kräfte beleuchtet. Die Konzepte unterschieden sich in den verwendeten anorganischen Partikeln und in der Art der Strukturbildung. Über einen modularen Ansatz aus Polymersynthese und polymeranaloger Thiol-En-Funktionalisierung wurde erfolgreich eine Bibliothek von Poly(2-oxazolin)en mit unterschiedlichen Funktionalitäten erstellt. Die Blockcopolymere bestehen aus einem kurzen partikelaffinen "Klebeblock", der aus Thiol-En-funktionalisiertem Poly(2-(3-butenyl)-2-oxazolin) besteht, und einem langen wasserlöslichen, strukturbildenden Block, der aus thermoresponsivem und kristallisierbarem Poly(2-isopropyl-2-oxazolin) besteht und hierarchische Morphologien ausbildet. Verschiedene analytische Untersuchungen wie Turbidimetrie, DLS, DSC, SEM oder XRD machten das thermoresponsive bzw. das Kristallisationsverhalten der Blockcopolymere in Abhängigkeit vom eingeführten Klebeblock zugänglich. Es zeigte sich, dass diese Polymere ein komplexes temperatur- und pH-abhängiges Trübungsverhalten aufweisen. Hinsichtlich der Kristallisation änderte der Klebeblock nicht die nanoskopische Kristallstruktur; er beeinflusste jedoch die Kristallisationszeit, den Kristallisationsgrad und die hierarchische Morphologie. Dieses Ergebnis wurde auf das unterschiedliche Aggregationsverhalten der Polymere in Wasser zurückgeführt. Für die Herstellung von Kompositen nutzte Konzept 1 mikrometergroße Kupferoxalat-Mesokristalle, die eine innere Nanostruktur aufweisen. Die Strukturbildung über den anorganischen Teil wurde durch das Verkleben und Anordnen dieser Partikel erstrebt. Konzept 1 ermöglichte homogene freistehende stabile Kompositfilme mit einem hohen anorganischen Anteil. Die Partikel-Polymer-Kombination vereinte jedoch ungünstige Eigenschaften in sich, d. h. ihre Längenskalen waren zu unterschiedlich, was die Selbstassemblierung der Partikel verhinderte. Aufgrund des geringen Aspektverhältnisses von Kupferoxalat blieb auch die gegenseitige Ausrichtung durch äußere Kräfte erfolglos. Im Ergebnis eignet sich das Kupferoxalat-Poly(2-oxazolin)-Modellsystem nicht für die Herstellung hierarchischer Kompositstrukturen. Im Gegensatz dazu verwendet Konzept 2 scheibenförmige Laponit®-Nanopartikel und kristallisierbare Blockcopolymere zur Strukturbildung über die organische Komponente durch polymervermittelte Selbstassemblierung. Komplementäre Analysemethoden (Zeta-Potenzial, DLS, SEM, XRD, DSC, TEM) zeigten sowohl eine kontrollierte Wechselwirkung zwischen den Komponenten in wässriger Umgebung als auch eine kontrollierte Strukturbildung, die in selbstassemblierten Nanokompositen resultiert, deren Struktur sich über mehrere Längenskalen erstreckt. Es wurde gezeigt, dass die negativ geladenen Klebeblöcke spezifisch und selektiv an den positiv geladenen Rändern der Laponit®-Partikel binden und so Polymer-Laponit®-Nanohybridpartikel entstehen, die als Grundbausteine für die Kompositbildung dienen. Die Hybridpartikel sind bei Raumtemperatur elektrosterisch stabilisiert - sterisch durch ihre langen, mit Wasser wechselwirkenden Poly(2-isopropyl-2-oxazolin)-Blöcke und elektrostatisch über die negativ geladenen Laponit®-Flächen. Im Ergebnis ließ sich Konzept 2 und damit die Strukturbildung über die organische Komponente erfolgreich umsetzten. Das Laponit®-Poly(2-oxazolin)-Modellsystem eröffnete den Weg zu selbstassemblierten geschichteten quasi-hierarchischen Nanokompositstrukturen mit hohem anorganischen Anteil. Abhängig von der frei verfügbaren Polymerkonzentration bei der Kompositbildung entstanden zwei unterschiedliche Komposit-Typen. Darüber hinaus entwarf die Arbeit einen Erklärungsansatz für den polymervermittelten Bildungsprozess der Komposit-Strukturen. Insgesamt legt diese Arbeit Struktur-Prozess-Eigenschafts-Beziehungen offen, um selbstassemblierte bioinspirierte Kompositstrukturen zu bilden und liefert neue Einsichten zu einer geeigneten Kombination an Komponenten und Herstellungsbedingungen, die eine kontrollierte selbstassemblierte Strukturbildung mithilfe funktionalisierter Poly(2-oxazolin)-Blockcopolymere erlauben. N2 - Natural inorganic-organic composite materials like nacre and bone feature unique mechanical properties due to their complex hierarchical structure and their controlled connection at the interface of the components, starting from the nanometer scale. Following these key principles of biological material design, this thesis investigates two concepts for bioinspired structure formation of composites based on gluing nano- or mesocrystals with functionalized poly(2-oxazoline) block copolymers and the potential of these materials for fabricating bioinspired self-assembled hierarchical inorganic-organic composite structures without external forces. The concepts differed in the inorganic particles used and in the structure formation pathway. A modular approach of polymer synthesis and polymer analogue thiol-ene modification was successfully used to create a platform of poly(2-oxazoline)s with different functionalities. The block copolymers are composed of a short particle-affine "gluing block" consisting of thiol-ene modified poly(2-(3-butenyl)-2-oxazoline) and a long water soluble, structure forming block that consists of thermoresponsive and crystallizable poly(2-isopropyl-2-oxazoline) that yields hierarchical morphologies. Various analytical investigations such as turbidimetry, DLS, DSC, SEM and XRD revealed the influence of the "gluing block" on the thermoresponsive and crystallization behavior of the block copolymers. It was shown that these polymers have complex temperature- and pH-dependent turbidity behavior. Concerning crystallization, the gluing block did not change the nanoscopic crystal structure but influenced the crystallization time, the degree of crystallization and the hierarchical morphology. This result was attributed to different aggregation behavior of the polymers in water. For the composite fabrication, concept 1 uses micrometer-sized copper oxalate mesocrystals, which exhibit an internal nanostructure and seek structure formation via the inorganic part by the assembly of these particles. Concept 1 enabled homogeneous free-standing stable composite films with high inorganic content. However, the particle-polymer combination combined unfavorable properties, i.e. their length scales were too different, which prevented the particles from self-assembling. Furthermore, due to the small aspect ratio of copper oxalate, mutual alignment via external forces was also unsuccessful. In essence, the copper oxalate-poly(2-oxazoline)-model system is not suitable for the fabrication of hierarchical composite structures. In contrast, concept 2 uses disc-shaped Laponite® nanoparticles and crystallizable block copolymers for structure formation via the organic component by polymer-mediated self-assembly. Complementary analytical methods (zeta potential, DLS, SEM, XRD, DSC, TEM) revealed both controlled interaction between the components in an aqueous environment and a controlled structure formation to yield self-assembled nanocomposites, whose structure spans several length scales. It was shown that the negatively charged gluing blocks bind specifically and selectively to the positively charged Laponite® particle rim, resulting in polymer-Laponite® nanohybrid particles that served as the basic building blocks for composite formation. The hybrid particles are electrosterically stabilized at room temperature – sterically by their long water-interacting poly(2-isopropyl-2-oxazoline) blocks and electrostatically via the negatively charged Laponite® faces. As a result, concept 2 and thus structure formation via the organic component could be successfully achieved. The Laponite®-poly(2-oxazoline)-model system opened the path to self-assembled layered quasi-hierarchical nanocomposite structures with a high inorganic content. Depending on the free available polymer concentration during composite formation, two different composite types were accessible. Additionally, a possible explanation for the polymer-mediated formation process of the self-assembled composite structure was proposed. This thesis contributes insights in understanding the fundamental structure-process-property relationships in order to form self-assembled bioinspired composite structures and provides conditions and suitable compilation of components that allow a controlled self-assembled structure formation via poly(2-oxazoline) block copolymers. KW - bioinspirierte Komposite KW - anorganisch-organische Hybrid-Nanopartikel KW - Selbstassemblierung KW - thermoresponsiv KW - Poly(2-oxazolin)-Blockcopolymer KW - Polymerkristallisation KW - Thiol-En KW - inorganic-organic hybrid nanoparticle KW - self-assembly KW - thermoresponsive KW - poly(2-oxazoline) KW - block copolymer KW - polymer crystallization KW - thiol-ene KW - bioinspired composite Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-523671 ER - TY - JOUR A1 - Stanglmair, Christoph A1 - Neubrech, Frank A1 - Pacholski, Claudia T1 - Chemical routes to surface enhanced infrared absorption (SEIRA) substrates JF - Zeitschrift für physikalische Chemie : international journal of research in physical chemistry and chemical physics N2 - Bottom-up strategies for fabricating SEIRA substrates are presented. For this purpose, wet-chemically prepared gold nanoparticles are coated with a polystyrene shell and subsequently self-assembled into different nanostructures such as quasi-hexagonally ordered gold nanoparticle monolayers, double layers, and honeycomb structures. Furthermore elongated gold nanostructures are obtained by sintering of gold nanoparticle double layers. The optical properties of these different gold nanostructures are directly connected to their morphology and geometrical arrangement - leading to surface plasmon resonances from the visible to the infrared wavelength range. Finally, SEIRA enhancement factors are determined. Gold nanoparticle double layers show the best performance as SEIRA substrates. KW - bottom-up KW - gold nanoparticles KW - self-assembly KW - surface enhanced spectroscopy Y1 - 2018 U6 - https://doi.org/10.1515/zpch-2018-1132 SN - 0942-9352 VL - 232 IS - 9-11 SP - 1527 EP - 1539 PB - De Gruyter CY - Berlin ER - TY - JOUR A1 - Noack, Sebastian A1 - Schanzenbach, Dirk A1 - Koetz, Joachim A1 - Schlaad, Helmut T1 - Polylactide-based amphiphilic block copolymers BT - Crystallization-Induced Self-Assembly and Stereocomplexation JF - Macromolecular rapid communications N2 - The aqueous self-assembly behavior of a series of poly(ethylene glycol)-poly(l-/d-lactide) block copolymers and corresponding stereocomplexes is examined by differential scanning calorimetry, dynamic light scattering, and transmission electron microscopy. Block copolymers assemble into spherical micelles and worm-like aggregates at room temperature, whereby the fraction of the latter seemingly increases with decreasing lactide weight fraction or hydrophobicity. The formation of the worm-like aggregates arises from the crystallization of the polylactide by which the spherical micelles become colloidally unstable and fuse epitaxically with other micelles. The self-assembly behavior of the stereocomplex aggregates is found to be different from that of the block copolymers, resulting in rather irregular-shaped clusters of spherical micelles and pearl-necklace-like structures. KW - crystallization KW - polylactide KW - self-assembly KW - stereocomplexation Y1 - 2018 U6 - https://doi.org/10.1002/marc.201800639 SN - 1022-1336 SN - 1521-3927 VL - 40 IS - 1 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Lange, Birger A1 - Wagner, Jürgen A1 - Zentel, Rudolf T1 - Fabrication of robust high-quality ORMOCER (R) inverse opals JF - Macromolecular rapid communications N2 - The nanostructuring of ORMOCER (R) to form inverse opals is described. For this purpose a polymer opal is used as a template and infiltrated with liquid ORMOCER (R). After photopolymerization of the resin the host opal is dissolved in tetrahydrofuran and an ORMOCER (R) inverse opal is obtained. It shows excellent periodicity (by SEM) and optical properties to reveal a high degree of face centered cubic order. This replication process leads to a nanostructured photonic crystal with the outstanding mechanical properties of ORMOCER (R) and high temperature stability up to 350 degrees C. KW - colloids KW - inverse opals KW - ORMOCER (R) KW - photonic crystal KW - self-assembly Y1 - 2006 U6 - https://doi.org/10.1002/marc.200600429 SN - 1022-1336 VL - 27 SP - 1746 EP - 1751 PB - Wiley-VCH CY - Weinheim ER - TY - THES A1 - Zhang, Shuhao T1 - Synthesis and self-assembly of protein-polymer conjugates for the preparation of biocatalytically active membranes T1 - Synthese und Selbstassemblierung von Protein/Polymer-Konjugaten für die Herstellung einer biokatalytisch aktiven Membran N2 - This thesis covers the synthesis of conjugates of 2-Deoxy-D-ribose-5-phosphate aldolase (DERA) with suitable polymers and the subsequent immobilization of these conjugates in thin films via two different approaches. 2-Deoxy-D-ribose-5-phosphate aldolase (DERA) is a biocatalyst that is capable of converting acetaldehyde and a second aldehyde as acceptor into enantiomerically pure mono- and diyhydroxyaldehydes, which are important structural motifs in a number of pharmaceutically active compounds. Conjugation and immobilization renders the enzyme applicable for utilization in a continuously run biocatalytic process which avoids the common problem of product inhibition. Within this thesis, conjugates of DERA and poly(N-isopropylacrylamide) (PNIPAm) for immobilization via a self-assembly approach were synthesized and isolated, as well as conjugates with poly(N,N-dimethylacrylamide) (PDMAA) for a simplified and scalable spray-coating approach. For the DERA/PNIPAm-conjugates different synthesis routes were tested, including grafting-from and grafting-to, both being common methods for the conjugation. Furthermore, both lysines and cysteines were addressed for the conjugation in order to find optimum conjugation conditions. It turned out that conjugation via lysine causes severe activity loss as one lysine plays a key role in the catalyzing mechanism. The conjugation via the cysteines by a grafting-to approach using pyridyl disulfide (PDS) end-group functionalized polymers led to high conjugation efficiencies in the presence of polymer solubilizing NaSCN. The resulting conjugates maintained enzymatic activity and also gained high acetaldehyde tolerance which is necessary for their use later on in an industrial relevant process after their immobilization. The resulting DERA/PNIPAm conjugates exhibited enhanced interfacial activity at the air/water interface compared to the single components, which is an important pre-requisite for the immobilization via the self-assembly approach. Conjugates with longer polymer chains formed homogeneous films on silicon wafers and glass slides while the ones with short chains could only form isolated aggregates. On top of that, long chain conjugates showed better activity maintenance upon the immobilization. The crosslinking of conjugates, as well as their fixation on the support materials, are important for the mechanical stability of the films obtained from the self-assembly process. Therefore, in a second step, we introduced the UV-crosslinkable monomer DMMIBA to the PNIPAm polymers to be used for conjugation. The introduction of DMMIBA reduced the lower critical solution temperature (LCST) of the polymer and thus the water solubility at ambient conditions, resulting in lower conjugation efficiencies and in turn slightly poorer acetaldehyde tolerance of the resulting conjugates. Unlike the DERA/PNIPAm, the conjugates from the copolymer P(NIPAM-co-DMMIBA) formed continuous, homogenous films only after the crosslinking step via UV-treatment. For a firm binding of the crosslinked films, a functionalization protocol for the model support material cyclic olefin copolymer (COC) and the final target support, PAN based membranes, was developed that introduces analogue UV-reactive groups to the support surface. The conjugates immobilized on the modified COC films maintained enzymatic activity and showed good mechanical stability after several cycles of activity assessment. Conjugates with longer polymer chains, however, showed a higher degree of crosslinking after the UV-treatment leading to a pronounced loss of activity. A porous PAN membrane onto which the conjugates were immobilized as well, was finally transferred to a dead end filtration membrane module to catalyze the aldol reaction of the industrially relevant mixture of acetaldehyde and hexanal in a continuous mode. Mono aldol product was detectable, but yields were comparably low and the operational stability needs to be further improved Another approach towards immobilization of DERA conjugates that was followed, was to generate the conjugates in situ by simply mixing enzyme and polymer and spray coat the mixture onto the membrane support. Compared to the previous approach, the focus was more put on simplicity and a possible scalability of the immobilization. Conjugates were thus only generated in-situ and not further isolated and characterized. For the conjugation, PDMAA equipped with N-2-thiolactone acrylamide (TlaAm) side chains was used, an amine-reactive comonomer that can react with the lysine residues of DERA, as well as with amino groups introduced to a desired support surface. Furthermore disulfide formation after hydrolysis of the Tla groups causes a crosslinking effect. The synthesized copolymer poly(N,N-Dimethylacrylamide-co-N-2-thiolactone acrylamide) (P(DMAA-co-TlaAm)) thus serves a multiple purpose including protein binding, crosslinking and binding to support materials. The mixture of DERA and polymer could be immobilized on the PAN support by spray-coating under partial maintenance of enzymatic activity. To improve the acetaldehyde tolerance, the polymer in used was further equipped with cysteine reactive PDS end-groups that had been used for the conjugation as described in the first part of the thesis. The generated conjugates indeed showed good acetaldehyde tolerance and were thus used to be coated onto PAN membrane supports. Post treatment with a basic aqueous solution of H2O2 was supposed to further crosslink the spray-coated film hydrolysis and oxidation of the thiolactone groups. However, a washing off of the material was observed. Optimization is thus still necessary. N2 - Die vorliegende Arbeit beschreibt die Synthese von Konjugaten aus 2-Deoxy-D-ribose-5-phosphat aldolase (DERA) und geeigneten Polymeren sowie deren nachfolgende Immobilisierung in dünnen Filmen mittels zwei verschiedener Herangehensweisen. DERA ist ein Biokatalysator, der in der Lage ist, Acetaldehyd mit einem weiteren Aldehyd zu enantiomerenreinen Mono- und Dihydroxyaldehyden zu verknüpfen. Diese Verbindungen sind wichtige Strukturmotive für eine Reihe von pharmazeutisch aktiven Verbindungen. Konjugation und Immobilisierung machen das Enzym nutzbar für den Einsatz in einem kontinuierlich betriebenen, biokatalytischen Prozess, welcher das bekannte Problem der Produktinhibierung umgeht. In der vorliegenden Arbeit wurden einerseits Konjugate aus DERA und Poly(N-isopropylacrylamid) (PNIPAm) für die Immobilisierung mittels eines Selbstassemblierungsverfahrens synthetisiert und isoliert, sowie andererseits entsprechende Konjugate mit Poly(N,N-dimethylacrylamid) (PDMAA) für ein vereinfachtes und skalierbares Immobilisierungsverfahren mittels Sprühauftrag hergestellt. Für die DERA/PNIPAm-Konjugate wurden verschiedene Syntheserouten getestet, einschließlich grafting-from und grafting-to. Beide Methoden werden standardmäßig für entsprechende Konjugationen eingesetzt. Weiterhin wurden sowohl die Lysine als auch die Cysteine des Enzyms für die Konjugation herangezogen, um optimale Konjugationsbedingungen zu finden. Konjugation über die Lysine verursachte deutliche Aktivitätsverluste, da ein Lysin auch die Schlüsselrolle im katalytischen Mechanismus des Enzyms spielt. Die Konjugation über die Cysteine sowie einen grafting-to-Ansatz unter Nutzung eines entsprechenden Polymers mit cysteinreaktiver Pyridyldisulfid-Endgruppe (PDS) führte zu einer hohen Konjugationseffizienz, sofern polymersolubilisierendes NaSCN eingesetzt wurde. Die resultierenden Konjugate behielten ihre enzymatische Aktivität bei deutlich gesteigerter Toleranz gegenüber Acetaldehyd. Beide Aspekte sind wichtig für den Einsatz des Enzyms in einem industriell relevanten Prozess nach dem Immobilisierungsschritt. Die DERA/PNIPAm-Konjugate zeigten eine erhöhte Oberflächenaktivität im Vergleich zu den Einzelkomponenten, was eine wichtige Voraussetzung für die Immobilisierung über eine Selbstassemblierung darstellt. Konjugate mit relativ langen Polymerketten bildeten nach dem Selbstassemblierungsschritt homogene Filme auf Silizium-Wafern und Glass-Objektträgern während Konjugate mit kurzen Ketten nur isolierte Aggregate bildeten. Darüber hinaus zeigten die Konjugate mit längeren Ketten einen besseren Erhalt der Enzymaktivität im Zuge der Immobilisierung. Die nachträgliche Vernetzung der Konjugate, sowie ihre feste Anbindung an die Trägermaterialien sind wichtige Voraussetzungen für die mechanische Stabilität des aus dem Selbstassemblierungsschritt erhaltenen Films. Aus diesem Grund wurde in einem zweiten Schritt das UV-vernetzbare Monomer DMMIBA in das für die Konjugation vorgesehene, PNIPAm-basierte Polymer eingeführt. Die Einbindung von DMMIBA setzte die untere kritische Lösungstemperatur (LCST) und damit die Löslichkeit des Polymers in Wasser bei Raumtemperatur herab. Dies führte zu niedrigeren Konjugationseffizienzen und damit zu einer etwas schlechteren Acetaldehydtoleranz der resultierenden Konjugate. Anders als im Fall von DERA/PNIPAm, bildeten die mit P(NIPAM-co-DMMIBA) synthetisierten Konjugate einen homogenen Film nur nach Vernetzung mittels UV-Behandlung aus. Für eine feste Anbindung des vernetzten Films wurde ein Funktionalisierungsprotokoll für das Modell-Trägermaterial aus cycloolefinischem Copolymer (COC) und das letztliche Zielmaterial, PAN-basierte Membranen, entwickelt, welches analoge UV-reaktive Gruppen auf der Trägeroberfläche erzeugt. Die auf COC immobilisierten Konjugate bewahrten ihre Enzymaktivität und zeigten eine gute mechanische Stabilität nach mehreren Aktivitäts-Messzyklen. Der Einsatz von Konjugaten mit längeren Polymerketten führte jedoch zu Filmen mit zu hohem Vernetzungsgrad was einen deutlichen Aktivitätsverlust bedingte. Eine poröse, PAN-basierte Membran, auf welcher die Konjugate ebenso immobilisiert wurden, wurde schlussendlich in ein Dead-End-Filtrationsmodul überführt, um die Aldolreaktion eines industriell relevanten Gemisches aus Acetaldehyd und Hexanal in einem kontinuierlich betriebenen Verfahren durchzuführen. Es konnte Monoaldolprodukt detektiert werden, jedoch waren die Ausbeuten vergleichsweise niedrig, während sich die operative Stabilität als verbesserungswürdig erwies. Ein weiterer Immobilisierungsansatz für DERA-Konjugate, beinhaltete die in-situ-Generierung der Konjugate durch einfaches Vermischen von Enzym und Polymer gefolgt von unmittelbaren Auftrag des Materials auf ein Membranträgermaterial mittels Sprühen. Im Vergleich zum ersten Ansatz lag der Fokus hier mehr auf der Einfachheit und prinzipiellen Skalierbarkeit der Immobilisierung. Daher wurden die Konjugate hier nur in-situ erzeugt und nicht weiter isoliert sowie charakterisiert. Für die Konjugation wurde PDMAA herangezogen, welches mit Thiolactongruppen entlang der Seitenkette ausgerüstet ist. Die Thiolactongruppen sind reaktiv gegenüber Aminen und können daher sowohl mit den Lysineinheiten der DERA reagieren als auch mit Aminogruppen, die im Vorfeld auf dem Trägermaterial erzeugt wurden. Darüber hinaus können durch Hydrolyse der Thiolactoneinheiten sowie anschließender Ausbildung von Disulfidbrücken Vernetzungspunkte erzeugt werden. Das hergestellte Copolymer poly(N,N-Dimethylacrylamide-co-N-2-thiolactone acrylamide) (P(DMAA-co-TlaAm) übernimmt daher mehrere Aufgaben einschließlich Proteinbindung, Vernetzung und Anbindung an das Trägermaterial. Mischungen aus DERA und Polymer konnten durch Sprühauftrag auf funktionalisierten PAN-Trägermaterialien unter teilweisem Erhalt der Enzymaktivität immobilisiert werden. Um auch hier die Acetaldehydtoleranz zu verbessern, wurde das Polymer in einem zweiten Schritt wieder mit PDS-Endgruppen ausgerüstet, die schon zuvor im ersten Teil der Arbeit für die Konjugatsynthese mittels grafting-to herangezogen wurden. Die hergestellten Konjugate zeigten eine gute Acetaldehydtoleranz und wurden daher verwendet, um PAN-Membranen zu beschichten. Eine Nachbehandlung mittels einer basischen Wasserstoffperoxidlösung sollte den aufgesprühten Film vernetzen. Im Ergebnis wurde jedoch ein großer Teil des aufgebrachten Materials im Zuge dieses Schritts heruntergewaschen. Eine weitere Optimierung dieses Schritts ist daher noch notwendig. KW - 2-deoxy-D-ribose-5-phoshphate aldolase KW - enzyme immobilization KW - enzymatically active membrane KW - enzyme/polymer conjugate KW - self-assembly Y1 - 2019 ER - TY - THES A1 - Noack, Sebastian T1 - Poly(lactide)-based amphiphilic block copolymers T1 - Polylactid-basierte amphiphile Blockcopolymere BT - self-assembly and stereocomplexation in aqueous media BT - Selbstorganisation und Stereokomplexierung in wässrigem Medium N2 - Due to its bioavailability and (bio)degradability, poly(lactide) (PLA) is an interesting polymer that is already being used as packaging material, surgical seam, and drug delivery system. Dependent on various parameters such as polymer composition, amphiphilicity, sample preparation, and the enantiomeric purity of lactide, PLA in an amphiphilic block copolymer can affect the self-assembly behavior dramatically. However, sizes and shapes of aggregates have a critical effect on the interactions between biological and drug delivery systems, where the general understanding of these polymers and their ability to influence self-assembly is of significant interest in science. The first part of this thesis describes the synthesis and study of a series of linear poly(L-lactide) (PLLA) and poly(D-lactide) (PDLA)-based amphiphilic block copolymers with varying PLA (hydrophobic), and poly(ethylene glycol) (PEG) (hydrophilic) chain lengths and different block copolymer sequences (PEG-PLA and PLA-PEG). The PEG-PLA block copolymers were synthesized by ring-opening polymerization of lactide initiated by a PEG-OH macroinitiator. In contrast, the PLA-PEG block copolymers were produced by a Steglich-esterification of modified PLA with PEG-OH. The aqueous self-assembly at room temperature of the enantiomerically pure PLLA-based block copolymers and their stereocomplexed mixtures was investigated by dynamic light scattering (DLS), transmission electron microscopy (TEM), wide-angle X-ray diffraction (WAXD), and differential scanning calorimetry (DSC). Spherical micelles and worm-like structures were produced, whereby the obtained self-assembled morphologies were affected by the lactide weight fraction in the block copolymer and self-assembly time. The formation of worm-like structures increases with decreasing PLA-chain length and arises from spherical micelles, which become colloidally unstable and undergo an epitaxial fusion with other micelles. As shown by DSC experiments, the crystallinity of the corresponding PLA blocks increases within the self-assembly time. However, the stereocomplexed self-assembled structures behave differently from the parent polymers and result in irregular-shaped clusters of spherical micelles. Additionally, time-dependent self-assembly experiments showed a transformation, from already self-assembled morphologies of different shapes to more compact micelles upon stereocomplexation. In the second part of this thesis, with the objective to influence the self-assembly of PLA-based block copolymers and its stereocomplexes, poly(methyl phosphonate) (PMeP) and poly(isopropyl phosphonate) (PiPrP) were produced by ring-opening polymerization to implement an alternative to the hydrophilic block PEG. Although, the 1,8 diazabicyclo[5.4.0]unde 7 ene (DBU) or 1,5,7 triazabicyclo[4.4.0]dec-5-ene (TBD) mediated synthesis of the corresponding poly(alkyl phosphonate)s was successful, however, not so the polymerization of copolymers with PLA-based precursors (PLA-homo polymers, and PEG-PLA block copolymers). Transesterification, obtained by 1H-NMR spectroscopy, between the poly(phosphonate)- and PLA block caused a high-field shifted peak split of the methine proton in the PLA polymer chain, with split intensities depending on the used catalyst (DBU for PMeP, and TBD for PiPrP polymerization). An additional prepared block copolymer PiPrP-PLLA that wasn’t affected in its polymer sequence was finally used for self-assembly experiments with PLA-PEG and PEG-PLA mixing. This work provides a comprehensive study of the self-assembly behavior of PLA-based block copolymers influenced by various parameters such as polymer block lengths, self-assembly time, and stereocomplexation of block copolymer mixtures. N2 - Aufgrund seiner Bioverfügbarkeit und (biologischen) Abbaubarkeit stellt Polylactid (PLA) ein interessantes Polymer dar, welches bereits in Verpackungsmaterialien, chirurgische Fäden und in selbst organisierten Wirkstofftransportsystemen eingesetzt wird. Als ein Teil von amphiphilen Blockcopolymeren kann PLA die molekulare Selbstorganisation in wässrigen Lösungen wesentlich beeinflussen. Die gebildeten Strukturen sind dabei essenziell von Faktoren wie der Blockcopolymer Zusammensetzung, Amphiphilie, Proben Vorbereitung und der Enantiomerenreinheit des Monomers abhängig. Die Kenntnis über die beschriebenen Faktoren und das allgemeine Verständnis für die dazugehörigen Polymere sowie die Möglichkeit ihre Selbstorganisation zu beeinflussen, ist von entscheidender Bedeutung in biomedizinischen Anwendungen. Unterschiedliche Größen oder Formen der selbst organisierten Wirkstoffträgern haben einen erheblichen Effekt auf die Wechselwirkung mit dem entsprechenden biologischen System und somit einen essenziellen Einfluss auf den Ausgang der medikamentösen Therapie. Der erste Teil dieser Doktorarbeit beschreibt die Synthese und Untersuchung einer Serie von Poly(L-Lactid) (PLLA) und Poly(D-Lactid) (PDLA)-basierten amphiphilen Blockcopolymeren mit variierenden PLA (hydrophob) und Polyethylenglycol (PEG) (hydrophil) Kettenlägen, sowie unterschiedlichen Polymersequenzen (PEG-PLA und PLA-PEG). Die genannten PEG-PLA Blockcopolymere wurden mittels organokatalysierter ringöffnender Polymerisation (ROP) hergestellt, wobei das entsprechende PEG-OH als Makroinitiator diente. Im Gegensatz dazu mussten die entsprechenden PLA-PEG Blockcopolymere mittels Steglich Veresterung von modifizierten PLA mit PEG-OH hergestellt werden. Die Selbstorganisation der PLLA-basierten Blockcopolymeren und deren stereokomplexierten Mischungen in wässriger Lösung erfolgte unter Raumtemperatur und wurde mittels Dynamischer Lichtstreuung (DLS), Transmissionselektronenmikroskopie (TEM), Röntgenstrukturanalyse und Dynamische Differenzkalorimetrie (DSC) untersucht. Dabei wurden kugel- und wurmförmige Strukturen beobachtet, wobei die gebildeten Strukturen vom Lactid Gewichtsanteil im Polymer, sowie der Selbstorganisationszeit abhängig waren. Mit andauernder Selbstorganisation und zunehmender Kristallinität wurden die zuerst gebildeten kugelförmigen Strukturen kolloidal unstabil und es erfolgte ein epitaktisches Wachstum zu wurmförmigen Strukturen in Abhängigkeit der Lactid Kettenlänge. Die stereokomplexierten Blockcopolymer Mischungen hingegen bildeten, unabhängig von der Copolymersequenz der entsprechenden Polymer Partner, hauptsächlich unregelmäßige Ansammlungen kugelförmiger Strukturen welche den Eindruck einer Perlenkette erweckten. Mit dem Einsetzen der Stereokomplexierung zeigten zeitlich aufgelöste Selbstorganisationsexperimente eine Transformation von bereits gebildeten Strukturen verschiedenster Formen und Größen (Polymer abhängig) zu kompakten Mizellen. Im zweiten Teil dieser Doktorarbeit wurden, mit dem Ziel die Selbstorganisation von PLA-basierten Blockcopolymeren und deren Stereokomplexmischung vermehrt zu beeinflussen, zwei alternative Polymere zu PEG untersucht. Ähnlich wie PLA, konnten mittels organokatalysierter ROP Polymethylphosphonat (PMeP) und Polyisopropylphosphonat (PiPrP) erfolgreich hergestellt werden. Die Blockcopolymer Synthese mit PLA-basierten Polymervorgängern erwies sich jedoch als schwierig. Aufgrund einer Protonenpeakspaltung der Methingruppe in der PLA-Wiederholeinheit konnten mittels 1H-NMR Spektroskopie Umersterungsprozesse zwischen dem Polyalkylphosphonat- und PLA block nachgewiesen werden, welche in Abhängigkeit des verwendeten Katalysators (DBU oder TBD) unterschiedlich stark ausfielen. Das ebenfalls hergestellte PiPrP-PLLA Blockcopolymer wies keine Unregelmäßigkeiten in der Polymersequenz auf und wurde anschließend für Selbstorganisationsexperimente mit PLA-PEG und PEG-PLA genutzt. Diese Arbeit liefert eine umfangreiche Studie zur Selbstorganisation PLA-basierter Blockcopolymere und untersucht verschiedenste Einflussparameter wie Blocklängen, Selbstorganisationszeit und Stereokomplexierung in Polymermischungen. KW - polylactide KW - polymer KW - self-assembly KW - stereocomplexation KW - block copolymer KW - Polylactid KW - Polymer KW - Selbstorganisation KW - Stereokomplexierung KW - Block Copolymer Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-436168 ER - TY - THES A1 - Nizardo, Noverra Mardhatillah T1 - Thermoresponsive block copolymers with UCST-behavior aimed at biomedical environments T1 - Thermoresponsive Blockcopolymere mit UCST-Verhalten unter biomedizinisch relevanten Bedingungen N2 - Thermoresponsive block copolymers of presumably highly biocompatible character exhibiting upper critical solution temperature (UCST) type phase behavior were developed. In particular, these polymers were designed to exhibit UCST-type cloud points (Tcp) in physiological saline solution (9 g/L) within the physiologically interesting window of 30-50°C. Further, their use as carrier for controlled release purposes was explored. Polyzwitterion-based block copolymers were synthesized by atom transfer radical polymerization (ATRP) via a macroinitiator approach with varied molar masses and co-monomer contents. These block copolymers can self-assemble in the amphiphilic state to form micelles, when the thermoresponsive block experiences a coil-to-globule transition upon cooling. Poly(ethylene glycol) methyl ether (mPEG) was used as the permanently hydrophilic block to stabilize the colloids formed, and polyzwitterions as the thermoresponsive block to promote the temperature-triggered assembly-disassembly of the micellear aggregates at low temperature. Three zwitterionic monomers were used for this studies, namely 3-((2-(methacryloyloxy)ethyl)dimethylammonio)propane-1-sulfonate (SPE), 4-((2-(methacryloyl- oxy)ethyl)dimethylammonio)butane-1-sulfonate (SBE), and 3-((2-(methacryloyloxy)ethyl)- dimethylammonio)propane-1-sulfate) (ZPE). Their (co)polymers were characterized with respect to their molecular structure by proton nuclear magnetic resonance (1H-NMR) and gel permeation chromatography (GPC). Their phase behaviors in pure water as well as in physiological saline were studied by turbidimetry and dynamic light scattering (DLS). These (co)polymers are thermoresponsive with UCST-type phase behavior in aqueous solution. Their phase transition temperatures depend strongly on the molar masses and the incorporation of co-monomers: phase transition temperatures increased with increasing molar masses and content of poorly water-soluble co-monomer. In addition, the presence of salt influenced the phase transition dramatically. The phase transition temperature decreased with increasing salt content in the solution. While the PSPE homopolymers show a phase transition only in pure water, the PZPE homopolymers are able to exhibit a phase transition only in high salinity, as in physiological saline. Although both polyzwitterions have similar chemical structures that differ only in the anionic group (sulfonate group in SPE and sulfate group in ZPE), the water solubility is very different. Therefore, the phase transition temperatures of targeted block copolymers were modulated by using statistical copolymer of SPE and ZPE as thermoresponsive block, and varying the ratio of SPE to ZPE. Indeed, the statistical copolymers of P(SPE-co-ZPE) show phase transitions both in pure water as well as in physiological saline. Surprisingly, it was found that mPEG-b-PSBE block copolymer can display “schizophrenic” behavior in pure water, with the UCST-type cloud point occurring at lower temperature than the LCST-type one. The block copolymer, which satisfied best the boundary conditions, is block copolymer mPEG114-b-P(SPE43-co-ZPE39) with a cloud point of 45°C in physiological saline. Therefore, it was chosen for solubilization studies of several solvatochromic dyes as models of active agents, using the thermoresponsive block copolymer as “smart” carrier. The uptake and release of the dyes were explored by UV-Vis and fluorescence spectroscopy, following the shift of the wavelength of the absorbance or emission maxima at low and high temperature. These are representative for the loaded and released state, respectively. However, no UCST-transition triggered uptake and release of these dyes could be observed. Possibly, the poor affinity of the polybetaines to the dyes in aqueous environtments may be related to the widely reported antifouling properties of zwitterionic polymers. N2 - Neue thermisch-responsive Blockcopolymere mit vermutlich hoher biokompatibilität wurden entwickelt, die ein Phasenverhalten mit oberer kritischer Lösungstemperatur (UCST) in wässriger zeigen. Insbesondere wurden diese Polymere so gestaltet, dass sie Trübungspunkte des UCST-Übergangs (Tcp) in physiologischer Kochsalzlösung (9 g/l) innerhalb des physiologischen interessanten Temperaturfensters von 30-50°C zeigen. Außerdem wurde ihre Eignung als Träger für kontrollierte Freisetzungszwecke untersucht. Diese Polyzwitterionen-basierte Blockcopolymere wurden durch „Atom transfer radikal polymerisation“ (ATRP) unter Verwendung eines Makroinitiators mit verschiedenen Molmassen und Anteilen von Comonomeren dargestellt. Diese Blockcopolymere können sich im amphiphilen Zustand zu Mizellen selbstorganisieren, wenn der thermisch-responsive Block beim Abkühlen einen Übergang vom Knäulen zur Kügel erfährt. Poly (ethylenglycol) methylether (mPEG) wurde als permanent hydrophiler Blockverwendet, der die gebildeten Kolloide stabilisiert, und Polyzwitterionen als thermisch-responsiver Block, der bei niedriger Temperatur die temperaturinduzierte Bildung von Mizellen bewirkt. Drei zwitterionische Monomere wurden für diese Untersuchungen verwendet, 3-((2-(meth- acryloyloxy)ethyl)dimethylammonio)propane-1-sulfonate (SPE), 4-((2-(methacryloyloxy)- ethyl)dimethylammonio)butane-1-sulfonate (SBE), und 3-((2-(methacryloyloxy)ethyl) dimethylammonio)propane-1-sulfate) (ZPE). Die (Co)Polymere wurden durch protonen-kernmagnetische Resonanz (1H-NMR) und Gelpermeationschromatographie (GPC) charakterisiert. Ihr Phasenübergangsverhalten im Wasser sowie in physiologischer Kochsalzlösung wurde durch Trübheitsmessungen und dynamische Lichtstreuung (DLS) untersucht. Diese (Co)Polymere sind thermisch-responsiv mit einem UCST-Übergang als Phasenverhalten in wässriger Lösung. Die Übergangstemperaturen hängen stark von den Molmassen und von dem Anteil der Co-Monomeren ab: Eine Vergrößerung der Molmasse und des Anteils an schwerwasserlöslichem Comonomer führt zu einer Erhöhung der Phasenübergangstemperaturen. Des Weiteren beeinflusst ein Salzzusatz den Phasenübergang sehr stark. Während die PSPE-Homopolymere nur in Wasser einen Phasenübergang aufweisen, zeigen die PZPE-Homopolymere nur bei hohem Salzgehalt, wie in physiologischer Kochsalzlösung, einen Phasenübergang. Obwohl beide Polyzwitterionen ähnliche chemische Strukturen besitzen und sich nur in der anionischen Gruppe (Sulfonatgruppe in SPE und Sulfatgruppe in ZPE) unterscheiden, ist die Wasserlöslichkeit sehr verschieden. Daher wurden die Phasenübergangstemperaturen der Blockcopolymere durch Verwendung von statistischen Copolymeren aus SPE und ZPE als thermisch-responsivem Block mittels des Verhältnisses von SPE zu ZPE moduliert. Solche statistischen Copolymere P(SPE-co-ZPE) zeigen Phasenübergänge sowohl in Wasser als auch in physiologischer Kochsalzlösung. Darüber hinaus wurde überraschenderweise gefunden, dass PSBE-basierte Blockcopolymer z. T. "schizophrenes" Verhalten in Wasser besitzen, wobei der Trübungspunkt des UCST-Übergangs niedriger als der des LCST-Übergangs liegt. Das Blockcopolymer mPEG114-b-P(SPE43-co-ZPE39) erfüllte am besten die Zielsetzung mit einem Trübungspunkt von 45°C in physiologischer Kochsalzlösung. Deswegen wurde es für Solubilisierungsexperimente verschiedener solvatochromer Farbstoffe als Modelle von Wirkstoffen ausgewählt, wobei die Eignung des thermisch-responsiven Blockcopolymers als "intelligenter" Träger untersucht wurde. Die Aufnahme und Freisetzung der Farbstoffe wurden durch UV-Vis- und Fluoreszenzspektroskopie anhand der Verschiebung der Wellenlänge der Extinktions- oder Emissionsmaxima bei niedriger und hoher Temperatur verfolgt. Diese Temperaturen entsprechen dem aggregierten bzw. gelösten Zustand des Polymeren. Jedoch wurde keine Aufnahme und Freisetzung dieser Farbstoffe durch UCST-Übergang beobachtet. Möglicherweise hängt die schwache Affinität der Polybetaine zu den Farbstoffen in wässrigen Systemen mit den bekannten Antifouling-Eigenschaften von zwitterionischen Polymeren zusammen. KW - block copolymer KW - thermoresponsive KW - polyzwitterion KW - upper critical solution temperature KW - self-assembly KW - Blockcopolymer KW - thermoresponsiv KW - Polyzwitterion KW - obere kritische Lösetemperatur KW - Selbstorganisation Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-412217 ER - TY - THES A1 - Heck, Christian T1 - Gold and silver nanolenses self-assembled by DNA origami T1 - Gold- und Silbernanolinsen, selbstassembliert durch DNA-Origami N2 - Nanolenses are linear chains of differently-sized metal nanoparticles, which can theoretically provide extremely high field enhancements. The complex structure renders their synthesis challenging and has hampered closer analyses so far. Here, the technique of DNA origami was used to self-assemble DNA-coated 10 nm, 20 nm, and 60 nm gold or silver nanoparticles into gold or silver nanolenses. Three different geometrical arrangements of gold nanolenses were assembled, and for each of the three, sets of single gold nanolenses were investigated in detail by atomic force microscopy, scanning electron microscopy, dark-field scattering and Raman spectroscopy. The surface-enhanced Raman scattering (SERS) capabilities of the single nanolenses were assessed by labelling the 10 nm gold nanoparticle selectively with dye molecules. The experimental data was complemented by finite-difference time-domain simulations. For those gold nanolenses which showed the strongest field enhancement, SERS signals from the two different internal gaps were compared by selectively placing probe dyes on the 20 nm or 60 nm gold particles. The highest enhancement was found for the gap between the 20 nm and 10 nm nanoparticle, which is indicative of a cascaded field enhancement. The protein streptavidin was labelled with alkyne groups and served as a biological model analyte, bound between the 20 nm and 10 nm particle of silver nanolenses. Thereby, a SERS signal from a single streptavidin could be detected. Background peaks observed in SERS measurements on single silver nanolenses could be attributed to amorphous carbon. It was shown that the amorphous carbon is generated in situ. N2 - Nanolinsen sind Strukturen aus linear angeordneten, unterschiedlich großen metallischen Nanopartikeln. Elektromagnetische Felder können durch sie theoretisch extrem verstärkt werden, aufgrund ihres komplexen Aufbaus sind sie bislang aber wenig erforscht. Im Rahmen dieser Dissertation wurden Nanolinsen mit Hilfe der DNA-Origami-Technik aus DNA-beschichteten 10 nm-, 20 nm- und 60 nm-Gold- oder Silbernanopartikeln hergestellt. Für Goldnanolinsen sind die Partikel dabei in drei unterschiedlichen Geometrien angeordnet worden. Einzelne Goldnanolinsen wurden mittels Rasterkraftmikroskopie, Rasterelektronenmikroskopie, Dunkelfeld- und Ramanspektroskopie untersucht. Um die Raman-Verstärkung quantifizieren zu können, trugen dabei jeweils die 10 nm-Goldpartikel Farbstoffmoleküle in ihrer Beschichtung. Die Interpretation der Messdaten wurde durch numerische Simulationen unterstützt. Nanolinsen zeichnen sich durch eine stufenweise Feldverstärkung aus. Dieser Effekt konnte experimentell bestätigt werden, indem selektiv die 20 nm- oder 60 nm-Partikel von Goldnanolinsen mit Farbstoffen markiert und die resultierenden Raman-Signale verglichen wurden. Ein mit Alkingruppen markiertes Protein ist ortsselektiv in Silbernanolinsen integriert worden. Es war möglich, das für das Alkin charakteristische oberflächenverstärkte Raman-Signal im Spektrum einer einzelnen Nanolinse und damit eines einzelnen Proteins zu beobachten. Bei den Messungen mit Silbernanolinsen sind für amorphe Kohlenstoffspezies charakterstische Hintergrundsignale beobachtet worden. Durch zeitabhängige Messungen konnte gezeigt werden, dass diese Spezies erst in situ gebildet werden. KW - DNA origami KW - gold nanoparticles KW - silver nanoparticles KW - SERS KW - self-assembly KW - plasmonics KW - nanolenses KW - DNA-Origami KW - Goldnanopartikel KW - Silbernanopartikel KW - SERS KW - Selbstassemblierung KW - Plasmonik KW - Nanolinsen Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-409002 ER - TY - THES A1 - Willersinn, Jochen T1 - Self-Assembly of double hydrophilic block copolymers T1 - Selbstorganisation Doppelt Hydrophiler Blockcopolymere BT - organized particles and vesicles beyond amphiphiles BT - organisierte Partikel und Vesikel jenseits von Amphiphilen N2 - The motivation of this work was to investigate the self-assembly of a block copolymer species that attended little attraction before, double hydrophilic block copolymers (DHBCs). DHBCs consist of two linear hydrophilic polymer blocks. The self-assembly of DHBCs towards suprastructures such as particles and vesicles is determined via a strong difference in hydrophilicity between the corresponding blocks leading to a microphase separation due to immiscibility. The benefits of DHBCs and the corresponding particles and vesicles, such as biocompatibility, high permeability towards water and hydrophilic compounds as well as the large amount of possible functionalizations that can be addressed to the block copolymers make the application of DHBC based structures a viable choice in biomedicine. In order to assess a route towards self-assembled structures from DHBCs that display the potential to act as cargos for future applications, several block copolymers containing two hydrophilic polymer blocks were synthesized. Poly(ethylene oxide)-b-poly(N-vinylpyrrolidone) (PEO-b-PVP) and Poly(ethylene oxide)-b-poly(N-vinylpyrrolidone-co-N-vinylimidazole) (PEO-b-P(VP-co-VIm) block copolymers were synthesized via reversible deactivation radical polymerization (RDRP) techniques starting from a PEO-macro chain transfer agent. The block copolymers displayed a concentration dependent self-assembly behavior in water which was determined via dynamic light scattering (DLS). It was possible to observe spherical particles via laser scanning confocal microscopy (LSCM) and cryogenic scanning electron microscopy (cryo SEM) at highly concentrated solutions of PEO-b-PVP. Furthermore, a crosslinking strategy with (PEO-b-P(VP-co-VIm) was developed applying a diiodo derived crosslinker diethylene glycol bis(2-iodoethyl) ether to form quaternary amines at the VIm units. The formed crosslinked structures proved stability upon dilution and transfer into organic solvents. Moreover, self-assembly and crosslinking in DMF proved to be more advantageous and the crosslinked structures could be successfully transferred to aqueous solution. The afforded spherical submicron particles could be visualized via LSCM, cryo SEM and Cryo TEM. Double hydrophilic pullulan-b-poly(acrylamide) block copolymers were synthesized via copper catalyzed alkyne azide cycloaddition (CuAAC) starting from suitable pullulan alkyne and azide functionalized poly(N,N-dimethylacrylamide) (PDMA) and poly(N-ethylacrylamide) (PEA) homopolymers. The conjugation reaction was confirmed via SEC and 1H-NMR measurements. The self-assembly of the block copolymers was monitored with DLS and static light scattering (SLS) measurements indicating the presence of hollow spherical structures. Cryo SEM measurements could confirm the presence of vesicular structures for Pull-b-PEA block copolymers. Solutions of Pull-b-PDMA displayed particles in cryo SEM. Moreover, an end group functionalization of Pull-b-PDMA with Rhodamine B allowed assessing the structure via LSCM and hollow spherical structures were observed indicating the presence of vesicles, too. An exemplified pathway towards a DHBC based drug delivery vehicle was demonstrated with the block copolymer Pull-b-PVP. The block copolymer was synthesized via RAFT/MADIX techniques starting from a pullulan chain transfer agent. Pull-b-PVP displayed a concentration dependent self-assembly in water with an efficiency superior to the PEO-b-PVP system, which could be observed via DLS. Cryo SEM and LSCM microscopy displayed the presence of spherical structures. In order to apply a reversible crosslinking strategy on the synthesized block copolymer, the pullulan block was selectively oxidized to dialdehydes with NaIO4. The oxidation of the block copolymer was confirmed via SEC and 1H-NMR measurements. The self-assembled and oxidized structures were subsequently crosslinked with cystamine dihiydrochloride, a pH and redox responsive crosslinker resulting in crosslinked vesicles which were observed via cryo SEM. The vesicular structures of crosslinked Pull-b-PVP could be disassembled by acid treatment or the application of the redox agent tris(2-carboxyethyl)-phosphin-hydrochloride. The successful disassembly was monitored with DLS measurements. To conclude, self-assembled structures from DHBCs such as particles and vesicles display a strong potential to generate an impact on biomedicine and nanotechnologies. The variety of DHBC compositions and functionalities are very promising features for future applications. N2 - Die Selbstanordnung von amphiphilen Blockcopolymeren in Wasser zu Strukturen höherer Ordnung, wie Partikel oder Vesikel, ist seit vielen Jahren bekannt und findet Anwendung in vielen Aspekten der Medizin und Materialwissenschaft. Allerdings ist die treibende Kraft dieser Selbstanordnung zu Vesikeln, die Hydrophobie des wasserunlöslichen Polmyerblocks, auch ein Hindernis für den gezielten Transport von neuen Medikamenten und Wirkstoffen, da die Membran dieser Vesikel aufgrund des hydrophoben Anteils sehr dicht gepackt ist und eine Diffusion der Wirkstoffe durch diese Membran häufig nur durch hohen synthetischen Aufwand gewährleistet werden kann. Einen möglichen Ausweg bietet die Anwendung von doppelt hydrophilen Blockcopolymeren (DHBCs), respektive Blockcopolymere die aus zwei Polymerblöcken mit unterschiedlicher Hydrophilie bestehen. Ist dieser Unterschied groß genug, können DHBCs Partikel- und Vesikelstrukturen ausbilden, die denen der amphiphilen Blockcopolymere ähnlich sind. Um das Potential von DHBC Strukturen zu untersuchen und einen tieferen Einblick in die fundamentalen Prinzipien dieser Selbstanordnung zu erhalten, wurden in dieser Arbeit fünf verschiedene Blockcopolymere hergestellt. Poly(Ethylenoxid)-b-Poly(N-Vinylpyrrolidon) und Poly(Ethylenoxid)-b-Poly(N-Vinylpyrrolidon-co-N-Vinylimidazol) Blockcopolymere wurden über eine kontrollierte radikalische Polymerisation hergestellt und zeigten eine konzentrationsabhängige Selbstanordnung zu Partikeln mit Größen unter einem Mikrometer. Diese Partikel konnten vernetzt werden, sodass sie auch bei starker Verdünnung nicht zerfallen. Zwei Pullulan-b-Poly(Acrylamid) Blockcopolymere wurden über eine Konjugationsreaktion hergestellt, die die beiden separaten Polymerblöcke miteinander verbindet. Diese Blockcopolymere ordneten sich in Wasser zu Vesikulären Strukturen mit Größen zwischen 250 nm und 500 nm. Des Weiteren war es möglich, einen Farbstoff an ein Blockcopolymer anzubringen und den vesikulären Charakter mit konfokaler Mikroskopie zu untersuchen. Ein Ausblick auf mögliche medizinische Anwendung von DHBCs wurde mit dem letzten Blockcopolymer Pullulan-b-Poly(N-Vinylpyrrolidon) gegeben. Vesikel aus diesem Blockcopolymer wurden mit einem pH- und Redox-responsivem Vernetzer vernetzt und es wurde gezeigt, dass sich die vesikulären Strukturen durch Säurebehandlung zersetzen lassen. Dieses System veranschaulicht die theoretische Anwendungsmöglichkeit von DHBCs im gezielten Medikamententransport. KW - self-assembly KW - double hydrophilic block copolymers KW - polymer chemistry KW - RAFT/MADIX polymerization KW - block copolymer vesicles KW - Selbstorganisation KW - Doppelt hydrophile Blockcopolymere KW - Polymerchemie KW - RAFT/MADIX Polymerisation KW - Blockcopolymervesikel Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-408578 ER - TY - JOUR A1 - Olejko, Lydia A1 - Cywinski, Piotr J. A1 - Bald, Ilko T1 - Ion-Selective formation of a guanine quadruplex on DNA origami structures JF - Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition N2 - DNA origami nanostructures are a versatile tool that can be used to arrange functionalities with high local control to study molecular processes at a single-molecule level. Here, we demonstrate that DNA origami substrates can be used to suppress the formation of specific guanine (G) quadruplex structures from telomeric DNA. The folding of telomeres into G-quadruplex structures in the presence of monovalent cations (e.g. Na+ and K+) is currently used for the detection of K+ ions, however, with insufficient selectivity towards Na+. By means of FRET between two suitable dyes attached to the 3- and 5-ends of telomeric DNA we demonstrate that the formation of G-quadruplexes on DNA origami templates in the presence of sodium ions is suppressed due to steric hindrance. Hence, telomeric DNA attached to DNA origami structures represents a highly sensitive and selective detection tool for potassium ions even in the presence of high concentrations of sodium ions. KW - DNA nanotechnology KW - FRET KW - G-quadruplexes KW - nanostructures KW - self-assembly Y1 - 2015 U6 - https://doi.org/10.1002/anie.201409278 SN - 1433-7851 SN - 1521-3773 VL - 54 IS - 2 SP - 673 EP - 677 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Kedracki, Dawid A1 - Filippov, Sergey K. A1 - Gour, Nidhi A1 - Schlaad, Helmut A1 - Nardin, Corinne T1 - Formation of DNA-Copolymer Fibrils Through an Amyloid-Like Nucleation Polymerization Mechanism JF - Macromolecular rapid communications N2 - Conjugation of a hydrophobic poly(2-oxazoline) bearing tertiary amide groups along its backbone with a short single stranded nucleotide sequence results in an amphiphilic comb/graft copolymer, which organizes in fibrils upon direct dissolution in water. Supported by circular dichroism, atomic force microscopy, transmission electron microscopy, and scattering data, fibrils are formed through inter- and intramolecular hydrogen bonding between hydrogen accepting amide groups along the polymer backbone and hydrogen donating nucleic acid grafts leading to the formation of hollow tubes. KW - DNA copolymers KW - fibers KW - hydrogen bonding KW - nucleation polymerization KW - self-assembly Y1 - 2015 U6 - https://doi.org/10.1002/marc.201400728 SN - 1022-1336 SN - 1521-3927 VL - 36 IS - 8 SP - 768 EP - 773 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Brosnan, Sarah M. A1 - Schlaad, Helmut A1 - Antonietti, Markus T1 - Aqueous Self-Assembly of Purely Hydrophilic Block Copolymers into Giant Vesicles JF - Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition N2 - Self-assembly of macromolecules is fundamental to life itself, and historically, these systems have been primitively mimicked by the development of amphiphilic systems, driven by the hydrophobic effect. Herein, we demonstrate that self-assembly of purely hydrophilic systems can be readily achieved with similar ease and success. We have synthesized double hydrophilic block copolymers from polysaccharides and poly(ethylene oxide) or poly(sarcosine) to yield high molar mass diblock copolymers through oxime chemistry. These hydrophilic materials can easily assemble into nanosized (<500nm) and microsized (>5m) polymeric vesicles depending on concentration and diblock composition. Because of the solely hydrophilic nature of these materials, we expect them to be extraordinarily water permeable systems that would be well suited for use as cellular mimics. KW - block copolymers KW - polymersomes KW - polysaccharides KW - self-assembly KW - vesicles Y1 - 2015 U6 - https://doi.org/10.1002/anie.201502100 SN - 1433-7851 SN - 1521-3773 VL - 54 IS - 33 SP - 9715 EP - 9718 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Weiss, Jan A1 - Wienk, Hans A1 - Boelens, Rolf A1 - Laschewsky, André T1 - Block copolymer micelles with an intermediate star-/flower-like structure studied by H-1 NMR relaxometry JF - Macromolecular chemistry and physics N2 - H-1 NMR relaxation is used to study the self-assembly of a double thermoresponsive diblock copolymer in dilute aqueous solution. Above the first transition temperature, at which aggregation into micellar structures is observed, the trimethylsilyl (TMS)-labeled end group attached to the shell-forming block shows a biphasic T-2 relaxation. The slow contribution reflects the TMS groups located at the periphery of the hydrophilic shell, in agreement with a star-like micelle. The fast T-2 contribution corresponds to the TMS groups, which fold back toward the hydrophobic core, reflecting a flower-like micelle. These results confirm the formation of block copolymer micelles of an intermediate nature (i.e., of partial flower-like and star-like character), in which a part of the TMS end groups folds back to the core due to hydrophobic interactions. KW - block copolymers KW - polymer micelles KW - relaxation NMR spectroscopy KW - self-assembly KW - thermoresponsive materials Y1 - 2014 U6 - https://doi.org/10.1002/macp.201300753 SN - 1022-1352 SN - 1521-3935 VL - 215 IS - 9 SP - 915 EP - 919 PB - Wiley-VCH CY - Weinheim ER - TY - THES A1 - Miasnikova, Anna T1 - New hydrogel forming thermo-responsive block copolymers of increasing structural complexity T1 - Neue Hydrogel-bildende thermisch schaltbare Blockcopolymere von zunehmender struktureller Komplexität N2 - This work describes the synthesis and characterization of stimuli-responsive polymers made by reversible addition-fragmentation chain transfer (RAFT) polymerization and the investigation of their self-assembly into “smart” hydrogels. In particular the hydrogels were designed to swell at low temperature and could be reversibly switched to a collapsed hydrophobic state by rising the temperature. Starting from two constituents, a short permanently hydrophobic polystyrene (PS) block and a thermo-responsive poly(methoxy diethylene glycol acrylate) (PMDEGA) block, various gelation behaviors and switching temperatures were achieved. New RAFT agents bearing tert-butyl benzoate or benzoic acid groups, were developed for the synthesis of diblock, symmetrical triblock and 3-arm star block copolymers. Thus, specific end groups were attached to the polymers that facilitate efficient macromolecular characterization, e.g by routine 1H-NMR spectroscopy. Further, the carboxyl end-groups allowed functionalizing the various polymers by a fluorophore. Because reports on PMDEGA have been extremely rare, at first, the thermo-responsive behavior of the polymer was investigated and the influence of factors such as molar mass, nature of the end-groups, and architecture, was studied. The use of special RAFT agents enabled the design of polymer with specific hydrophobic and hydrophilic end-groups. Cloud points (CP) of the polymers proved to be sensitive to all molecular variables studied, namely molar mass, nature and number of the end-groups, up to relatively high molar masses. Thus, by changing molecular parameters, CPs of the PMDEGA could be easily adjusted within the physiological interesting range of 20 to 40°C. A second responsivity, namely to light, was added to the PMDEGA system via random copolymerization of MDEGA with a specifically designed photo-switchable azobenzene acrylate. The composition of the copolymers was varied in order to determine the optimal conditions for an isothermal cloud point variation triggered by light. Though reversible light-induced solubility changes were achieved, the differences between the cloud points before and after the irradiation were small. Remarkably, the response to light differed from common observations for azobenzene-based systems, as CPs decreased after UV-irradiation, i.e with increasing content of cis-azobenzene units. The viscosifying and gelling abilities of the various block copolymers made from PS and PMDEGA blocks were studied by rheology. Important differences were observed between diblock copolymers, containing one hydrophobic PS block only, the telechelic symmetrical triblock copolymers made of two associating PS termini, and the star block copolymers having three associating end blocks. Regardless of their hydrophilic block length, diblock copolymers PS11 PMDEGAn were freely flowing even at concentrations as high as 40 wt. %. In contrast, all studied symmetrical triblock copolymers PS8-PMDEGAn-PS8 formed gels at low temperatures and at concentrations as low as 3.5 wt. % at best. When heated, these gels underwent a gel-sol transition at intermediate temperatures, well below the cloud point where phase separation occurs. The gel-sol transition shifted to markedly higher transition temperatures with increasing length of the hydrophilic inner block. This effect increased also with the number of arms, and with the length of the hydrophobic end blocks. The mechanical properties of the gels were significantly altered at the cloud point and liquid-like dispersions were formed. These could be reversibly transformed into hydrogels by cooling. This thesis demonstrates that high molar mass PMDEGA is an easily accessible, presumably also biocompatible and at ambient temperature well water-soluble, non-ionic thermo-responsive polymer. PMDEGA can be easily molecularly engineered via the RAFT method, implementing defined end-groups, and producing different, also complex, architectures, such as amphiphilic triblock and star block copolymers, having an analogous structure to associative telechelics. With appropriate design, such amphiphilic copolymers give way to efficient, “smart” viscosifiers and gelators displaying tunable gelling and mechanical properties. N2 - Diese Arbeit befasst sich mit der RAFT-vermittelten Synthese und Charakterisierung von stimuli-empfindlichen Polymeren und ihrer Selbstorganisation zu „intelligenten” Hydrogelen. Die Hydrogele wurden so entwickelt, dass sie bei niedrigen Temperaturen stark quellen, bei Temperaturerhöhung jedoch reversibel in einem hydrophoben, kollabierten Zustand umgewandelt werden. Mit dem permanent hydrophoben Polystyrol (PS) und dem hydrophilen, thermisch schaltbaren Poly(methoxy-diethylen¬glycol-acrylat) (PMDEGA) als Bausteine, wurden unterschiedliche Gelierungsverhalten und thermische Übergangstemperaturen erreicht. Zur Synthese von Diblock-, symmetrischen Triblock- und dreiarmigen Sternblock-Copolymeren wurden neue funktionelle Kettenüberträger entwickelt. Diese gestatteten es, tert-butyl Benzoeester und Benzoesäure Endgruppen in die Polymere einzubauen, die einerseits eine effiziente Analyse mittels Routine 1H-NMR und darüber hinaus eine spätere Funktionalisierung der Endgruppen mit einer Fluoreszenzsonde ermöglichten. Da über PMDEGA kaum Daten vorlagen, wurde der Einfluss von Molekulargewicht, Endgruppen und Architektur auf das thermo-responsive Verhalten untersucht. Die speziellen Kettenüberträger ermöglichten es, gezielt hydrophobe wie hydrophile Endgruppen in die Polymere einzuführen. Die Trübungspunkte der wässerigen Lösungen von PMDEGA zeigten sich bis zu relativ hohen molaren Massen abhängig gegenüber allen untersuchten Variablen, nämlich dem Molekulargewicht, der Art und Zahl von Endgruppen. Durch Variation der diversen Parameter ließ sich die Schalttemperatur von PMDEGA in physiologisch relevanten Temperaturbereich von 20 bis 40 °C einstellen. Um die Polymere für einen zweiten Stimulus, nämlich Licht, empfindlich zu machen, wurden Azobenzol-funktionalisierte Acrylate synthetisiert und statistisch mit MDEGA copolymerisiert. Die Zusammensetzung der Polymeren wurde variiert und das isotherme Schalten der Löslichkeit durch Licht untersucht. Obwohl ein reversibles Schalten erreicht wurde, waren die Unterschiede zwischen den Trübungstemperaturen von UV-Licht bestrahlten und unbestrahlten Proben nur gering. Interessanterweise senkte die UV-Bestrahlung, d.h. ein erhöhter Gehalt von cis-Azobenzol-Gruppen, die Trübungstemperaturen herab. Dies ist genau umgekehrt als für azobenzolbasierten Systeme klassisch beschrieben. Die Gelbildung der verschiedenen Blockcopolymere von PS und PMDEGA wurde mittels Rheologie untersucht. Dabei traten deutliche Unterschiede auf, zwischen dem Gelierungsverhalten der Diblockcopolymere, die nur einen PS Block enthalten, dem der symmetrischen Triblockcopolymere, die zwei assoziative PS Endblöcken besitzen, und dem der Sternpolymere, die drei assoziative PS Blöcke aufweisen. Unabhängig von der Länge des hydrophilen Blockes, bilden Diblockcopolymere des Typs PS11-PMDEGAn keine Gele, sondern selbst bei hohen Konzentrationen von 40 Gew. % Lösungen. Im Gegensatz dazu bildeten die Triblockcopolymere des Typs PS8-PMDEGAn-PS8 Gele bei niedrigen Temperaturen, vereinzelt schon ab 3.5 wt. %. Mit steigender Temperatur, tritt bereits unterhalb des Trübungspunktes für diese Systeme ein Gel-Sol Übergang auf. Der Gel-Sol Übergang bewegt sich zu höheren Temperaturen mit steigende Länge des hydrophilen inneren Blocks. Dieser Trend verstärkt sich mit zunehmender Anzahl von Endblöcken und deren Länge. An der Trübungstemperatur veränderten sich die mechanischen Eigenschaften aller Gele signifikant und die gebildeten flüssigen Dispersionen ließen sich reversibel beim Abkühlen wieder zu Gel schalten. Diese Arbeit, zeigt dass PMDEGA ein bei niedrigen Temperaturen gut wasserlösliches, nicht-ionisches, thermisch-schaltbares und wahrscheinlich biokompatibles Polymer ist. PMDEGA liest sich einfach mittels den RAFT-Verfahren molekular maßschneiden, mit spezifischen Endgruppen und komplexen Polymerarchitekturen. Solche amphiphilen Triblock- und Sternblock-Copolymeren hoher Molmasse, wirken als assoziative Telechele. Daher eigenen sich bei entsprechendem Design diese amphiphilen Blockcopolymere als effiziente Verdicker und Gelbildner mit einstellbaren mechanischen und thermischen Eigenschaften. KW - Blockcopolymere KW - Selbstorganisation KW - thermisch schaltbar KW - LCST KW - RAFT KW - block copolymers KW - self-assembly KW - thermoresponsive KW - LCST KW - RAFT Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-59953 ER - TY - THES A1 - Valverde Serrano, Clara T1 - Self-assembly behavior in hydrophilic block copolymers T1 - Selbstorganisation von hydrophilen Blockcopolymeren N2 - Block copolymers are receiving increasing attention in the literature. Reports on amphiphilic block copolymers have now established the basis of their self-assembly behavior: aggregate sizes, morphologies and stability can be explained from the absolute and relative block lengths, the nature of the blocks, the architecture and also solvent selectiveness. In water, self-assembly of amphiphilic block copolymers is assumed to be driven by the hydrophobic. The motivation of this thesis is to study the influence on the self-assembly in water of A b B type block copolymers (with A hydrophilic) of the variation of the hydrophilicity of B from non-soluble (hydrophobic) to totally soluble (hydrophilic). Glucose-modified polybutadiene-block-poly(N-isopropylacrylamide) copolymers were prepared and their self-assembly behavior in water studied. The copolymers formed vesicles with an asymmetric membrane with a glycosylated exterior and poly(N-isopropylacrylamide) on the inside. Above the low critical solution temperature (LCST) of poly(N-isopropylacrylamide), the structure collapsed into micelles with a hydrophobic PNIPAM core and glycosylated exterior. This collapse was found to be reversible. As a result, the structures showed a temperature-dependent interaction with L-lectin proteins and were shown to be able to encapsulate organic molecules. Several families of double hydrophilic block copolymers (DHBC) were prepared. The blocks of these copolymers were biopolymers or polymer chimeras used in aqueous two-phase partition systems. Copolymers based on dextran and poly(ethylene glycol) blocks were able to form aggregates in water. Dex6500-b-PEG5500 copolymer spontaneously formed vesicles with PEG as the “less hydrophilic” barrier and dextran as the solubilizing block. The aggregates were found to be insensitive to the polymer's architecture and concentration (in the dilute range) and only mildly sensitive to temperature. Variation of the block length, yielded different morphologies. A longer PEG chain seemed to promote more curved aggregates following the inverse trend usually observed in amphiphilic block copolymers. A shorter dextran promoted vesicular structures as usually observed for the amphiphilic counterparts. The linking function was shown to have an influence of the morphology but not on the self-assembly capability in itself. The vesicles formed by dex6500-b-PEG5500 showed slow kinetics of clustering in the presence of Con A lectin. In addition both dex6500-b-PEG5500 and its crosslinked derivative were able to encapsulate fluorescent dyes. Two additional dextran-based copolymers were synthesized, dextran-b-poly(vinyl alcohol) and dextran-b-poly(vinyl pyrrolidone). The study of their self-assembly allowed to conclude that aqueous two-phase systems (ATPS) is a valid source of inspiration to conceive DHBCs capable of self-assembling. In the second part the principle was extended to polypeptide systems with the synthesis of a poly(N-hydroxyethylglutamine)-block-poly(ethylene glycol) copolymer. The copolymer that had been previously reported to have emulsifying properties was able to form vesicles by direct dissolution of the solid in water. Last, a series of thermoresponsive copolymers were prepared, dextran-b-PNIPAMm. These polymers formed aggregates below the LCST. Their structure could not be unambiguously elucidated but seemed to correspond to vesicles. Above the LCST, the collapse of the PNIPAM chains induced the formation of stable objects of several hundreds of nanometers in radius that evolved with increasing temperature. The cooling of these solution below LCST restored the initial aggregates. This self-assembly of DHBC outside any stimuli of pH, ionic strength, or temperature has only rarely been described in the literature. This work constituted the first formal attempt to frame the phenomenon. Two reasons were accounted for the self-assembly of such systems: incompatibility of the polymer pairs forming the two blocks (enthalpic) and a considerable solubility difference (enthalpic and entropic). The entropic contribution to the positive Gibbs free energy of mixing is believed to arise from the same loss of conformational entropy that is responsible for “the hydrophobic effect” but driven by a competition for water of the two blocks. In that sense this phenomenon should be described as the “hydrophilic effect”. N2 - Blockcopolymere erfahren ein stetig wachsendes Interesse, was an der steigenden Anzahl an Publikationen zu diesem Thema erkennbar ist. Zahlreiche Studien zu amphiphilen Blockcopolymeren haben dabei einige grundlegende Erkenntnisse über deren chemisches und physikalisches Verhalten, vor allem über die Selbstorganisation, hervorgebracht. So können die Größe, die verschiedenen Morphologien und auch die Stabilität der gebildeten Aggregate anhand der relativen und absoluten Blocklängen, die chemischen Struktur der Blöcke, der molekularen Architektur und der Eigenschaften des verwendeten Lösungsmittel erklärt werden. Im speziellen Fall des Wassers als Lösungsmittel bist die Selbstorganisation amphiphiler Blockcopolymere durch den hydrophoben Effekt bedingt. Dieser Arbeit liegt das Interesse an der Selbstorganisation in wässrigem Medium von Blockcopolymeren des Typs A-b-B mit A als hydrophilem Block und B als Block mit variierender Hydrophilie bzw. Hydrophpobie von unlöslich bis vollständig löslich zugrunde. Durch Variation dieser Eigenschaften von Block B soll dessen Einfluss auf das Selbstorganisationsverhalten untersucht werden. Dazu wurden mit Glucose modifizierte Polybutadien-block-Poly(N-Isopropylacrylamid)-Copolymere hergestellt und deren Selbstorganisation in Wasser untersucht. Die Copolymere bilden Vesikel mit einer asymmetrischen Membran, wobei im äußeren Bereich glycolysierte Gruppen und im inneren Bereich Poly(N-Isopropylacrylamid) (PNIPAM) vorliegen. Beim Überschreiten der low critical solution temperature (LCST) kollabiert die vesikuläre Struktur unter Bildung von Mizellen mit einem hydrophoben PNIPAM-Mizellinneren und nach außen gerichteten glycolysierten Blöcken. Diese strukturelle Umwandlung ist reversibel. Die Strukturen zeigten außerdem eine temperaturabhängige Wechselwirkung mit L-Lectin-Proteinen und die Möglichkeit zur Einkapselung organischer Moleküle konnte belegt werden. Des weiteren wurden verschiedene Gruppen von Blockcopolymeren mit zwei hydrophilen Blöcken synthetisiert (double hydrophilic block copolymers – DHBC). Die Blöcke dieser Systeme waren entweder Biopolymere oder Polymerchimäre, die in wässrigen Zwei-Phasen-Trennverfahren eingesetzt werden. Polymere, die auf Dextran- und Poly(ethylenglycol)-Blöcken basieren, zeigen Aggregatbildung in wässriger Phase. Dex6500-b-PEG5500 bildet spontan Vesikel mit PEG als „weniger hydrophilem“ Bestandteil und Dextran als löslichem Block. Die Bildung dieser Vesikel zeigte keine Emfpindlichkeit gegenüber einer Veränderung der Polymerarchitektur und der Konzentration, und nur eine geringe Sensitivität gegenüber Temperaturänderungen. Veränderungen der Blocklängen dagegen beeinflussten die Selbstorganisation und führten zu unterschiedlichen Morphologien. Längere PEG-Blöcke bevorzugten dabei die Bildung eher gekrümmter Aggregate, entgegen dem Trend, der gewöhnlicherweise für amphiphile Blockcopolymere beobachtet wird. Die Verkürzung des Dextran-Blocks fördert die Ausbildung vesikulärer Strukturen, was dem Verhalten der amphiphilen Gegenspieler der DHBC-Systeme entspricht. Die funktionelle Gruppe zur Verbindung der beiden Blöcke hat zwar einen Einfluss auf die Morphologie der gebildeten Aggregate, nicht jedoch auf die eigentliche Fähigkeit der Systeme zur Selbstorganisation. Die Dex6500-b-PEG5500-Vesikel wiesen zudem eine langsame Bildungskinetik in Gegenwart von Con-A-Lectin auf. Des Weiteren waren sowohl Dex6500-b-PEG5500 als auch das quervernetzte Derivate dieses Copolymers in der Lage, Fluoreszenzfarbstoffe einzulagern. Um zu zeigen, dass wässrige Zwei-Phasen-Systeme (aqueous two phase systems – ATPS) eine belastbare Grundlage für die Untersuchung und Entwicklung selbstorganisierender DHBC-Systeme sind, wurden weitere Dextran-basierte Copolymere synthetsisiert: Dextran-b-Poly(vinylalokohol) und Detran-b-Poly(vinylpyrrolidon). In einem zweiten Teil dieser Arbeit wurde das zuvor erarbeitete Prinzip auf auf Polypeptidsysteme ausgeweitet. Dazu wurde ein Poly(N-Hydroxyethylglutamin)-block-Poly(ethylenglycol)-Copolymer hergestellt. Dieses Copolymer, dessen emulgierenden Eigenschaften bereits bekannt waren, wies unmittelbar nach Lösung des Feststoffes in Wasser Vesikelbildung auf. In einem dritten Teil der Studie wurden thermoresponsive Copolymere hergestellt und untersucht: Dextran-b-PNIPAMm. Unterhalb der LCST konnte die Bildung von Aggregaten nachgewiesen werden, deren Struktur nicht zweifelsfrei entschlüsselt werden konnte, wobei jedoch zahlreiche Hinweise auf eine vesikuläre Struktur hindeuten. Oberhalb der LCST wurde durch die Kollabierung der PNIPAM-Ketten die Bildung stabiler Strukturen mit Radien von mehreren hundert Nanometern induziert, deren weitere Entwicklung durch eine weitere Temperaturerhöhung gefördert werden konnte. Durch Rückkühlung in den Temperaturebereich unterhalb der LCST konnten die zuvor beobachteten Aggregate reversibel zurückgebildet werden. Das Selbstorganisationsverhalten von DHBC, unabhängig vom Einfluss des pH-Werts, der Ionenstärke oder der Temperatur are bisher nur in sehr geringem Umfang Gegenstand wissenschaftlicher Veröffentlichungen. Diese Arbeit stellt damit den ersten umfassenden Beitrag zur systematischen Erarbeitung dieses Phänomens dar. Es konnten dabei zwei Ursachen für die beobachteten Selbstorganisationseffekte bestimmt werden: die Inkompatibilität der beiden Polymerblöcke (enthalpischer Effekt) und der Unterschied in deren Löslichkeit (enthalpische und entropische Effekte). Der entropische Beitrag zur positiven Gibbs’schen Freien Mischungsenergie wird dem selben Verlust konformativer Entropie zugeordnet, der auch für den hydrophoben Effekt verantwortlich ist, allerdings angetrieben durch einen Wettbewerb der beiden Polymerblöcke um das Wasser. In diesem Sinne kann man das beobachtete Phänomen als „hydrophilen Effekt“ bezeichnen. KW - Selbstorganisation KW - Blockcopolymere KW - hydrophil KW - self-assembly KW - copolymers KW - hydrophilic Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-54163 ER - TY - THES A1 - Weiß, Jan T1 - Synthesis and self-assembly of multiple thermoresponsive amphiphilic block copolymers T1 - Synthese und Selbstorganisation von mehrfach thermisch schaltbaren amphiphilen Blockcopolymeren N2 - In the present thesis, the self-assembly of multi thermoresponsive block copolymers in dilute aqueous solution was investigated by a combination of turbidimetry, dynamic light scattering, TEM measurements, NMR as well as fluorescence spectroscopy. The successive conversion of such block copolymers from a hydrophilic into a hydrophobic state includes intermediate amphiphilic states with a variable hydrophilic-to-lipophilic balance. As a result, the self-organization is not following an all-or-none principle but a multistep aggregation in dilute solution was observed. The synthesis of double thermoresponsive diblock copolymers as well as triple thermoresponsive triblock copolymers was realized using twofold-TMS labeled RAFT agents which provide direct information about the average molar mass as well as residual end group functionality from a routine proton NMR spectrum. First a set of double thermosensitive diblock copolymers poly(N-n-propylacrylamide)-b-poly(N-ethylacrylamide) was synthesized which differed only in the relative size of the two blocks. Depending on the relative block lengths, different aggregation pathways were found. Furthermore, the complementary TMS-labeled end groups served as NMR-probes for the self-assembly of these diblock copolymers in dilute solution. Reversible, temperature sensitive peak splitting of the TMS-signals in NMR spectroscopy was indicative for the formation of mixed star-/flower-like micelles in some cases. Moreover, triple thermoresponsive triblock copolymers from poly(N-n-propylacrylamide) (A), poly(methoxydiethylene glycol acrylate) (B) and poly(N-ethylacrylamide) (C) were obtained from sequential RAFT polymerization in all possible block sequences (ABC, BAC, ACB). Their self-organization behavior in dilute aqueous solution was found to be rather complex and dependent on the positioning of the different blocks within the terpolymers. Especially the localization of the low-LCST block (A) had a large influence on the aggregation behavior. Above the first cloud point, aggregates were only observed when the A block was located at one terminus. Once placed in the middle, unimolecular micelles were observed which showed aggregation only above the second phase transition temperature of the B block. Carrier abilities of such triple thermosensitive triblock copolymers tested in fluorescence spectroscopy, using the solvatochromic dye Nile Red, suggested that the hydrophobic probe is less efficiently incorporated by the polymer with the BAC sequence as compared to ABC or ACB polymers above the first phase transition temperature. In addition, due to the problem of increasing loss of end group functionality during the subsequent polymerization steps, a novel concept for the one-step synthesis of multi thermoresponsive block copolymers was developed. This allowed to synthesize double thermoresponsive di- and triblock copolymers in a single polymerization step. The copolymerization of different N-substituted maleimides with a thermosensitive styrene derivative (4-vinylbenzyl methoxytetrakis(oxyethylene) ether) led to alternating copolymers with variable LCST. Consequently, an excess of this styrene-based monomer allowed the synthesis of double thermoresponsive tapered block copolymers in a single polymerization step. N2 - Die Selbstorganisation von mehrfach thermisch schaltbaren Blockcopolymeren in verdünnter wässriger Lösung wurde mittels Trübungsphotometer, dynamischer Lichtstreuung, TEM Messungen, NMR sowie Fluoreszenzspektroskopie untersucht. Die schrittweise Überführung eines hydrophilen in ein hydrophobes Blockcopolymer beinhaltet ein oder mehr amphiphile Zwischenstufen mit einstellbarem hydrophilen zu lipophilen Anteil (HLB). Dies führt dazu, dass die Selbstorganisation solcher Polymere in Lösung nicht nur einem Alles-oder-nichts-Prinzip folgt sondern ein mehrstufiges Aggregationsverhalten beobachtet wird. Die Synthese von doppelt thermisch schaltbaren Diblockcopolymeren und dreifach thermisch schaltbaren Triblockcopolymeren wurde durch sequenzielle RAFT Polymerisation realisiert. Dazu wurden zweifach TMS-markierte RAFT Agentien verwendet, welche die Bestimmung der molaren Masse sowie der verbliebenen Endgruppenfunktionalität direkt aus einem Protonen NMR Spektrum erlauben. Mit diesen RAFT Agentien wurde zunächst eine Serie von doppelt thermisch schaltbaren Diblockcopolymeren aus Poly(N-n-propylacrylamid)-b-Poly(N-ethylacrylamid), welche sich lediglich durch die relativen Blocklängen unterscheiden, hergestellt. In Abhängigkeit von der relativen Blocklänge wurde ein unterschiedliches Aggregationsverhalten der Diblockcopolymere in verdünnter wässriger Lösung beobachtet. Des Weiteren wirken die komplementär TMS-markierten Endgruppen als NMR-Sonden während der schrittweisen Aggregation dieser Polymere. Reversible, temperaturabhängige Peakaufspaltung der TMS-Signale in der NMR Spektroskopie spricht für eine Aggregation in gemischte stern-/blumenartige Mizellen, in denen ein Teil der hydrophoben Endgruppen in den hyrophoben Kern zurückfaltet. Obendrein wurden dreifach thermisch schaltbare Triblockcopolymere aus Poly(N-n-propylacrylamid) (A), Poly(methoxydiethylen glycol acrylat) (B) und Poly(N-ethylacrylamid) (C) in allen möglichen Blocksequenzen (ABC, BAC, ACB) durch schrittweisen Aufbau mittels RAFT Polymerisation erhalten. Das Aggregationsverhalten dieser Polymere in verdünnter wässriger Lösung war relativ komplex und hing stark von der Position der einzelnen Blöcke in den Triblockcopolymeren ab. Besonders die Position des Blocks mit der niedrigsten LCST (A) war ausschlaggebend für die resultierenden Aggregate. So wurde oberhalb der ersten Phasenübergangstemperatur nur Aggregation der Triblockcopolymere beobachtet, wenn der A Block an einem der beiden Enden der Polymere lokalisiert war. Wurde der A Block hingegen in der Mitte der Polymere positioniert, entstanden unimere Mizellen zwischen der ersten und zweiten Phasenübergangstemperatur, welche erst aggregierten, nachdem der zweite Block (B) seinen Phasenübergang durchlief. Die Transportereigenschaften dieser Triblockcopolymere wurden mittels Fluoreszenzspektroskopie getestet. Dazu wurde die Einlagerung eines hydrophoben, solvatochromen Fluoreszenzfarbstoffes, Nilrot, in Abhängigkeit der Temperatur untersucht. Im Gegensatz zu den Polymeren mit der Blocksequenz ABC oder ACB, zeigten die Polymere mit der Sequenz BAC eine verminderte Aufnahmefähigkeit des hydrophoben Farbstoffes oberhalb des ersten Phasenübergangs, was auf die fehlende Aggregation und die damit verbundenen relativ kleinen hydrophoben Domänen der unimolekularen Mizellen zwischen der ersten und zweiten Phasenübergangstemperatur zurückzuführen ist. Aufgrund des zunehmenden Verlustes von funktionellen Endgruppen während der RAFT Synthese von Triblockcopolymeren wurde ein neuartiges Konzept zur Einschrittsynthese von mehrfach schaltbaren Blockcopolymeren entwickelt. Dieses erlaubt die Synthese von mehrfach schaltbaren Diblock- und Triblockcopoylmeren in einem einzelnen Reaktionsschritt. Die Copolymeriation von verschiedenen N-substituierten Maleimiden mit einem thermisch schaltbaren Styrolderivat (4-Vinylbenzylmethoxytetrakis(oxyethylene) ether) ergab alternierende Copolymere mit variabler LCST. Die Verwendung eines Überschusses dieses styrolbasierten Monomers erlaubt ferner die Synthese von Gradientenblockcopolymeren in einem einzelnen Polymerisationsschritt. KW - Selbstorganisation KW - Blockcopolymer KW - RAFT KW - temperaturschaltbar KW - Mizelle KW - self-assembly KW - block copolymer KW - RAFT KW - thermoresponsive KW - micelle Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-53360 ER - TY - THES A1 - ten Brummelhuis, Niels T1 - Self-assembly of cross-linked polymer micelles into complex higher-order aggregates T1 - Selbstorganisation von vernetzten Polymermizellen zu Komplexen Aggregaten mit höherer Ordnung N2 - The creation of complex polymer structures has been one of the major research topics over the last couple of decades. This work deals with the synthesis of (block co-)polymers, the creation of complex and stimuli-responsive aggregates by self-assembly, and the cross-linking of these structures. Also the higher-order self-assembly of the aggregates is investigated. The formation of poly-2-oxazoline based micelles in aqueous solution and their simultaneous functionalization and cross-linking using thiol-yne chemistry is e.g. presented. By introducing pH responsive thiols in the core of the micelles the influence of charged groups in the core of micelles on the entire structure can be studied. The charging of these groups leads to a swelling of the core and a decrease in the local concentration of the corona forming block (poly(2-ethyl-2-oxazoline)). This decrease in concentration yields a shift in the cloud point temperature to higher temperatures for this Type I thermoresponsive polymer. When the swelling of the core is prohibited, e.g. by the introduction of sufficient amounts of salt, this behavior disappears. Similar structures can be prepared using complex coacervate core micelles (C3Ms) built through the interaction of weakly acidic and basic polymer blocks. The advantage of these structures is that two different stabilizing blocks can be incorporated, which allows for more diverse and complex structures and behavior of the micelles. Using block copolymers with either a polyanionic or a polycationic block C3Ms could be created with a corona which contains two different soluble nonionic polymers, which either have a mixed corona or a Janus type corona, depending on the polymers that were chosen. Using NHS and EDC the micelles could easily be cross-linked by the formation of amide bonds in the core of the micelles. The higher-order self-assembly behavior of these core cross-linked complex coacervate core micelles (C5Ms) was studied. Due to the cross-linking the micelles are stabilized towards changes in pH and ionic strength, but polymer chains are also no longer able to rearrange. For C5Ms with a mixed corona likely network structures were formed upon the collapse of the thermoresponsive poly(N-isopropylacrylamide) (PNIPAAm), whereas for Janus type C5Ms well defined spherical aggregates of micelles could be obtained, depending on the pH of the solution. Furthermore it could be shown that Janus micelles can adsorb onto inorganic nanoparticles such as colloidal silica (through a selective interaction between PEO and the silica surface) or gold nanoparticles (by the binding of thiol end-groups). Asymmetric aggregates were also formed using the streptavidin-biotin binding motive. This is achieved by using three out of the four binding sites of streptavidin for the binding of one three-arm star polymer, end-functionalized with biotin groups. A homopolymer with one biotin end-group can be used to occupy the last position. This binding of two different polymers makes it possible to create asymmetric complexes. This phase separation is theoretically independent of the kind of polymer since the structure of the protein is the driving force, not the intrinsic phase separation between polymers. Besides Janus structures also specific cross-linking can be achieved by using other mixing ratios. N2 - In den letzten Jahrzehnten war die Herstellung von komplizierten Polymerstrukturen ein wichtiges Forschungsthema für Polymerchemiker. Diese Arbeit behandelt die Synthese von (Blockco-)Polymere, die Herstellung von komplexen und stimulus-responsiven Aggregaten (Mizellen) durch Selbstorganisation, sowie die Vernetzung dieser Strukturen. Auch die Anordnung dieser Mizellen zu Aggregaten mit höherer Ordnung wurde untersucht. Zum Beispiel wird die Bildung von Poly(2-oxazolin) basierter Mizellen in wässriger Lösung und die gleichzeitige Funktionalisierung und Vernetzung dieser Mizellen mittels Thiol-In-Chemie beschrieben. Durch die Einführung von pH-responsiven Gruppen in den Kern der Mizellen konnte der Einfluss von geladenen Gruppen im Kern auf das gesamte Aggregat untersucht werden. Das Einführen von Ladung führt zum Quellen des Mizellkerns und damit zu einer niedrigeren lokalen Konzentration von wasserlöslichem Poly(2-ethyl-2-oxazolin) (PEtOx). Diese niedrigere Konzentration ergibt eine Verschiebung des Trübungspunkt dieses Typ I thermoresponsiven Polymers zu höheren Temperaturen. Wenn die Ausdehnung des Kerns nicht erfolgt, z.B. in Anwesenheit einer hohen Salzkonzentration, findet dieser Effekt nicht statt. Ähnliche Strukturen können mithilfe von Mizellen mit komplexen Koazervatkern (English: Complex Coacervate Core Micelles, C3Ms) durch die Interaktion zwischen Polymeren mit negativ und positiv geladenen Blöcken hergestellt werden. Der Vorteil dieser Strukturen ist, dass zwei verschiedene stabilisierende Polymerblöcke in einem Aggregat vereint werden können, was zur Bildung einer Vielzahl noch komplizierterer Strukturen und zu mehr Responsivität führen kann. Mithilfe von Blockcopolymeren, bestehend aus jeweils einen polyionischen Block und einem neutralen Block (z.B. PEtOx, PEO oder poly(N-isopropylacrylamid) (PNIPAAm)), konnten C3Ms hergestellt werden, in denen zwei neutrale Polymere vereint wurden. Es konnte gezeigt werden, dass diese Polymere sowohl gemischt als auch phasensepariert vorliegen können (letzteres ergibt Janus Mizellen), abhängig welche Polymere gewählt werden. Durch Vernetzung im Kern konnten die Mizellen stabilisiert und fixiert werden (C5Ms). Die Selbstanordnung dieser vernetzten Mizellen zu größeren Aggregaten wurde untersucht. Wenn eine Lösung mit vernetzten Mizellen über den Trübungspunkt von PNIPAAm erhitzt wurde, bildeten sich Netzwerke aus Mizellen mit einer gemischten Korona, während Janus Mizellen sich zu wohldefinierten Aggregaten höherer Ordnung anordneten. Weiterhin konnte gezeigt werden, dass Janus Mizellen sich auf der Oberfläche von anorganischen Nanopartikeln anlagern können; z.B. durch die selektive Wechselwirkung zwischen PEO und Silica oder durch die Adsorption von Thiolgruppen auf Gold-Nanopartikeln. Asymmetrische Aggregate konnten auch mithilfe des Streptavidin-Biotin Komplexes erhalten werden. Durch das Binden der Biotin-Endgruppen eines dreiarmigen Sternpolymeren an eine Streptavidin-Einheit und anschließende Belegung der verbliebenen Bindungsstelle mit der Biotin-gruppe eines Homopolymers, können sehr spezifisch zwei verschiedene Polymere in einem Janus Aggregat vereint werden. Auch die Vernetzung des Streptavidins kann erzielt werden, indem andere Mischverhältnisse gewählt werden. KW - Polymerchemie KW - Selbstorganisation KW - Mizellen KW - Janus KW - Vernetzung KW - Polymer chemistry KW - self-assembly KW - micelles KW - Janus KW - cross-linking Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-52320 ER -