TY - JOUR A1 - Zu, Fengshuo A1 - Amsalem, Patrick A1 - Egger, David A. A1 - Wang, Rongbin A1 - Wolff, Christian Michael A1 - Fang, Honghua A1 - Loi, Maria Antonietta A1 - Neher, Dieter A1 - Kronik, Leeor A1 - Duhm, Steffen A1 - Koch, Norbert T1 - Constructing the Electronic Structure of CH3NH3PbI3 and CH3NH3PbBr3 Perovskite Thin Films from Single-Crystal Band Structure Measurements JF - The journal of physical chemistry letters N2 - Photovoltaic cells based on halide perovskites, possessing remarkably high power conversion efficiencies have been reported. To push the development of such devices further, a comprehensive and reliable understanding of their electronic properties is essential but presently not available. To provide a solid foundation for understanding the electronic properties of polycrystalline thin films, we employ single-crystal band structure data from angle-resolved photoemission measurements. For two prototypical perovskites (CH3NH3PbBr3 and CH3NH3PbI3), we reveal the band dispersion in two high-symmetry directions and identify the global valence band maxima. With these benchmark data, we construct "standard" photoemission spectra from polycrystalline thin film samples and resolve challenges discussed in the literature for determining the valence band onset with high reliability. Within the framework laid out here, the consistency of relating the energy level alignment in perovskite-based photovoltaic and optoelectronic devices with their functional parameters is substantially enhanced. Y1 - 2019 U6 - https://doi.org/10.1021/acs.jpclett.8b03728 SN - 1948-7185 VL - 10 IS - 3 SP - 601 EP - 609 PB - American Chemical Society CY - Washington ER - TY - GEN A1 - Wolff, Christian Michael A1 - Canil, Laura A1 - Rehermann, Carolin A1 - Nguyen, Ngoc Linh A1 - Zu, Fengshuo A1 - Ralaiarisoa, Maryline A1 - Caprioglio, Pietro A1 - Fiedler, Lukas A1 - Stolterfoht, Martin A1 - Kogikoski, Junior, Sergio A1 - Bald, Ilko A1 - Koch, Norbert A1 - Unger, Eva L. A1 - Dittrich, Thomas A1 - Abate, Antonio A1 - Neher, Dieter T1 - Correction to 'Perfluorinated self-assembled monolayers enhance the stability and efficiency of inverted perovskite solar cells' (2020, 14 (2), 1445−1456) T2 - ACS nano Y1 - 2020 U6 - https://doi.org/10.1021/acsnano.0c08081 SN - 1936-0851 SN - 1936-086X VL - 14 IS - 11 SP - 16156 EP - 16156 PB - American Chemical Society CY - Washington, DC ER - TY - JOUR A1 - Zhao, Yuhang A1 - Opitz, Andreas A1 - Eljarrat, Alberto A1 - Kochovski, Zdravko A1 - Koch, Christoph A1 - Koch, Norbert A1 - Lu, Yan T1 - Kinetic study on the adsorption of 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane on Ag nanoparticles in chloroform BT - implications for the charge transfer complex of Ag-F(4)TCNQ JF - ACS applied nano materials N2 - In this study, the kinetics of the adsorption of 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F(4)TCNQ) on the surface of Ag nanoparticles (Ag NPs) in chloroform has been intensively investigated, as molecular doping is known to play a crucial role in organic electronic devices. Based on the results obtained from UV-visible (vis)-near-infrared (NIR) absorption spectroscopy, cryogenic transmission electron microscopy, scanning nanobeam electron diffraction, and electron energy loss spectroscopy, a two-step interaction kinetics has been proposed for the Ag NPs and F(4)TCNQ molecules, which includes the first step of electron transfer from Ag NPs to F(4)TCNQ indicated by the ionization of F(4)TCNQ and the second step of the formation of a Ag-F(4)TCNQ complex. The whole process has been followed via UV-vis-NIR absorption spectroscopy, which reveals distinct kinetics at two stages: the instantaneous ionization and the long-term complex formation. The kinetics and the influence of the molar ratio of Ag NPs/F(4)TCNQ molecules on the interaction between Ag NPs and F(4)TCNQ molecules in an organic solution are reported herein for the first time. Furthermore, the control experiment with silica-coated Ag NPs manifests that the charge transfer at the surface between Ag NPs and F(4)TCNQ molecules is prohibited by a silica layer of 18 nm. KW - Ag nanoparticles KW - F(4)TCNQ KW - phase transfer KW - kinetics KW - electron transfer KW - surface interaction Y1 - 2021 U6 - https://doi.org/10.1021/acsanm.1c02153 SN - 2574-0970 VL - 4 IS - 11 SP - 11625 EP - 11635 PB - American Chemical Society CY - Washington ER -