TY - JOUR A1 - Ast, Sandra A1 - Schwarze, Thomas A1 - Müller, Holger A1 - Sukhanov, Aleksey A1 - Michaelis, Stefanie A1 - Wegener, Joachim A1 - Wolfbeis, Otto S. A1 - Körzdörfer, Thomas A1 - Dürkop, Axel A1 - Holdt, Hans-Jürgen T1 - A highly K+-Selective Phenylaza-[18]crown-6-Lariat-Ether-Based Fluoroionophore and its application in the sensing of K+ Ions with an optical sensor film and in cells JF - Chemistry - a European journal N2 - Herein, we report the synthesis of two phenylaza-[18]crown-6 lariat ethers with a coumarin fluorophore (1 and 2) and we reveal that compound 1 is an excellent probe for K+ ions under simulated physiological conditions. The presence of a 2-methoxyethoxy lariat group at the ortho position of the anilino moiety is crucial to the substantially increased stability of compounds 1 and 2 over their lariat-free phenylaza-[18] crown-6 ether analogues. Probe 1 shows a high K+/Na+ selectivity and a 2.5-fold fluorescence enhancement was observed in the presence of 100 mm K+ ions. A fluorescent membrane sensor, which was prepared by incorporating probe 1 into a hydrogel, showed a fully reversible response, a response time of 150 s, and a signal change of 7.8% per 1 mm K+ within the range 1-10 mm K+. The membrane was easily fabricated (only a single sensing layer on a solid polyester support), yet no leaching was observed. Moreover, compound 1 rapidly permeated into cells, was cytocompatible, and was suitable for the fluorescent imaging of K+ ions on both the extracellular and intracellular levels. KW - crown compounds KW - fluorescence KW - gels KW - potassium KW - sensors Y1 - 2013 U6 - https://doi.org/10.1002/chem.201302350 SN - 0947-6539 SN - 1521-3765 VL - 19 IS - 44 SP - 14911 EP - 14917 PB - Wiley-VCH CY - Weinheim ER - TY - GEN A1 - Schwarze, Thomas A1 - Müller, Holger A1 - Ast, Sandra A1 - Steinbrück, Dörte A1 - Eidner, Sascha A1 - Geißler, Felix A1 - Kumke, Michael Uwe A1 - Holdt, Hans-Jürgen T1 - Fluorescence lifetime-based sensing of sodium by an optode N2 - We report a 1,2,3-triazol fluoroionophore for detecting Na+ that shows in vitro enhancement in the Na+-induced fluorescence intensity and decay time. The Na+-selective molecule 1 was incorporated into a hydrogel as a part of a fiber optical sensor. This sensor allows the direct determination of Na+ in the range of 1–10 mM by measuring reversible fluorescence decay time changes. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 182 KW - ion optodes KW - sensors KW - indicators KW - chromoionophore KW - ionophore KW - membrane KW - switches KW - systems KW - samples KW - green Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-76785 SP - 14167 EP - 14170 PB - The Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Schwarze, Thomas A1 - Müller, Holger A1 - Ast, Sandra A1 - Steinbrück, Dörte A1 - Eidner, Sascha A1 - Geißler, Felix A1 - Kumke, Michael Uwe A1 - Holdt, Hans-Jürgen ED - Kumke, Michael Uwe T1 - Fluorescence lifetime-based sensing of sodium by an optode JF - Chemical Communications N2 - We report a 1,2,3-triazol fluoroionophore for detecting Na+ that shows in vitro enhancement in the Na+-induced fluorescence intensity and decay time. The Na+-selective molecule 1 was incorporated into a hydrogel as a part of a fiber optical sensor. This sensor allows the direct determination of Na+ in the range of 1–10 mM by measuring reversible fluorescence decay time changes. KW - ion optodes KW - sensors KW - indicators KW - chromoionophore KW - ionophore KW - membrane KW - switches KW - systems KW - samples KW - green Y1 - 2014 SN - 0022-4936 SN - 0009-241X SP - 14167 EP - 14170 PB - The Royal Society Chemistry CY - Cambridge ER -