TY - JOUR A1 - Techen, Anne A1 - Czapla, Sylvia A1 - Möllnitz, Kristian A1 - Budach, Dennis B. A1 - Wessig, Pablo A1 - Kumke, Michael Uwe T1 - Synthesis and spectroscopic characterization of fluorophore-labeled oligospiroketal rods JF - Helvetica chimica acta N2 - Fluorescence probes consisting of well-established fluorophores in combination with rigid molecular rods based on spirane-type structures were investigated with respect to their fluorescence properties under different solvent conditions. The attachment of the dyes was accomplished by 1,3-dipolar cycloaddition between alkynes and azides (click' reaction) and is a prime example for a novel class of sensor constructs. Especially, the attachment of two (different) fluorophores on opposite sides of the molecular rods paves the way to new sensor systems with less bulky (compared to the conventional DNA- or protein-based concepts), nevertheless rigid spacer constructs, e.g., for FRET-based sensing applications. A detailed photophysical characterization was performed in MeOH (and in basic H2O/MeOH mixtures) for i) rod constructs containing carboxyfluorescein, ii) rod constructs containing carboxyrhodamine, iii) rod constructs containing both carboxyfluorescein and carboxyrhodamine, and iv) rod constructs containing both pyrene and perylene parts. For each dye (pair), two rod lengths with different numbers of spirane units were synthesized and investigated. The rod constructs were characterized in ensemble as well as single-molecule fluorescence experiments with respect to i) specific roddye and ii) dyedye interactions. In addition to MeOH and MeOH/NaOH, the rod constructs were also investigated in micellar systems, which were chosen as a simplified model for membranes. KW - Molecular rods KW - Forster resonance energy transfer (FRET) KW - Carboxyfluorescein KW - Carboxyrhodamine KW - Pyrene KW - Perylene KW - Fluorescence Y1 - 2013 U6 - https://doi.org/10.1002/hlca.201200616 SN - 0018-019X SN - 1522-2675 VL - 96 IS - 11 SP - 2046 EP - 2067 PB - Wiley-VCH CY - Weinheim ER -