TY - JOUR A1 - Seuffert, Marcel T. A1 - Wintzheimer, Susanne A1 - Oppmann, Maximilian A1 - Granath, Tim A1 - Prieschl, Johannes A1 - Alrefai, Anas A1 - Holdt, Hans-Jürgen A1 - Müller-Buschbaum, Klaus A1 - Mandel, Karl T1 - An all white magnet by combination of electronic properties of a white light emitting MOF with strong magnetic particle systems JF - Journal of materials chemistry : C, Materials for optical and electronic devices N2 - A multi-component particle system was developed that combines the properties of white color, white light emission and strong magnetism on the macroscopic and microscopic scale. The system is constituted by combination of an inorganic white core with either hard or soft magnetic properties and a white light emitting MOF. The key towards this achievement is the supraparticulate character constituted by a magnetic core, of either magnetite or alpha-Fe, surrounded by titania and silica nanoparticles of a certain size in a loose structural shell-arrangement as white components and finally the white light emitting metal-organic framework (MOF) EuTb@IFP-1 as building blocks of a core-shell structure. The supraparticles are created by forced assembly of the inorganic compounds and by combining spray-drying and postsynthetic modification by solvothermal chemistry. Thereby, the gap is bridged that homogenous compounds are either strongly magnetic, white in appearance or white light emitting. The composites presented herein inherit these properties intrinsically as electronic properties. The white characteristics are based on all optical properties that enable white: light reflection, refraction, and light emission. This work shifts the paradigm that strong magnetic materials are always expected to be intrinsically dark. Y1 - 2020 U6 - https://doi.org/10.1039/d0tc03473h SN - 2050-7526 SN - 2050-7534 VL - 8 IS - 45 SP - 16010 EP - 16017 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Otter, Dirk A1 - Mondal, Suvendu Sekhar A1 - Alrefai, Anas A1 - Krätz, Lorenz A1 - Holdt, Hans-Jürgen A1 - Bart, Hans-Jörg T1 - Characterization of an isostructural MOF series of Imidazolate Frameworks Potsdam by means of sorption experiments with water vapor JF - Nanomaterials N2 - Sorption measurements of water vapor on an isoreticular series of Imidazolate Frameworks Potsdam (IFP), based on penta-coordinated metal centers with secondary building units (SBUs) connected by multidentate amido-imidate-imidazolate linkers, have been carried out at 303.15 K. The isotherm shapes were analyzed in order to gain insight into material properties and compared to sorption experiments with nitrogen at 77.4 K and carbon dioxide at 273.15 K. Results show that water vapor sorption measurements are strongly influenced by the pore size distribution while having a distinct hysteresis loop between the adsorption and desorption branch in common. Thus, IFP-4 and -8, which solely contain micropores, exhibit H4 (type I) isotherm shapes, while those of IFP-1, -2 and -5, which also contain mesopores, are of H3 (type IV) shape with three inflection points. The choice of the used linker substituents and transition metals employed in the framework has a tremendous effect on the material properties and functionality. The water uptake capacities of the examined IFPs are ranging 0.48 mmol g(-1) (IFP-4) to 6.99 mmol g(-1) (IFP-5) and comparable to those documented for ZIFs. The water vapor stability of IFPs is high, with the exception of IFP-8. KW - material characterization KW - water vapor KW - adsorption KW - hysteresis KW - Imidazolate Frameworks Potsdam Y1 - 2021 U6 - https://doi.org/10.3390/nano11061400 SN - 2079-4991 VL - 11 IS - 6 PB - MDPI CY - Basel ER - TY - JOUR A1 - Hossain, Mohammad Delwar A1 - Chakraborty, Chanchal A1 - Rana, Utpal A1 - Mondal, Sanjoy A1 - Holdt, Hans-Jürgen A1 - Higuchi, Masayoshi T1 - Green-to-black electrochromic copper(I)-based metallo-supramolecular polymer with a perpendicularly twisted structure JF - ACS applied polymer materials N2 - A Cu(I)-based metallo-supramolecular polymer with a perpendicularly twisted structure was synthesized by a 1:1 complexation of tetrakis(acetonitrile)copper(I) triflate with the pi-conjugated dibenzoeilatin ligand. Stepwise complexation behavior of Cu(I) with the ligand was revealed by titrimetric ultraviolet- visible (UV-vis) spectroscopic analysis. Formation of a high-molecular-weight polymer (M-w = 1.21 x 10(5) Da) was confirmed by a size-exclusion chromatography-viscometry-right-angle laser light scattering study. A bundle structure of the polymer chains was observed by scanning electron microscopy. A cyclic voltammogram of the polymer film showed reversible redox waves at a negative potential. A device consisting of indium tin oxide (ITO) glass coated with a film of the polymer exhibited reversible green-to-black electrochromism upon alternate application of -3 and +1 V. KW - electrochromism KW - metallo-supramolecular polymers KW - stepwise complexation KW - metal-to-ligand charge transfer KW - copper KW - dibenzoeilatin Y1 - 2020 U6 - https://doi.org/10.1021/acsapm.0c00559 SN - 2637-6105 VL - 2 IS - 11 SP - 4449 EP - 4454 PB - American Chemical Society CY - Washington, DC ER - TY - JOUR A1 - Schwarze, Thomas A1 - Sperlich, Eric A1 - Müller, Thomas A1 - Kelling, Alexandra A1 - Holdt, Hans-Jürgen T1 - Synthesis efforts of acyclic bis(monoalkylamino)maleonitriles and macrocyclic bis(dialkylamino)maleonitriles as fluorescent probes for cations and a new colorimetric copper(II) chemodosimeter JF - Helvetica chimica acta N2 - In this article, we report on the synthesis of acyclic bis(monoalkylamino)maleonitriles and on the intended synthesis of macrocyclic bis(dialkylamino)maleonitriles to get fluorescent probes for cations. During our efforts to synthesize macrocyclic bis(dialkylamino)maleonitriles, we were only able to isolate macrocyclic bis(dialkylamino)-fumaronitriles. The synthesis of macrocyclic bis(dialkylamino)maleonitriles is challenging, due to the fact that bis-(dialkylamino)fumaronitriles are thermodynamically more stable than the corresponding bis(dialkylamino)-maleonitriles. Further, it turned out that the acyclic bis(monoalkylamino)maleonitriles and macrocyclic bis-(dialkylamino)fumaronitriles are no suitable tools to detect cations by a strong fluorescence enhancement. Further, only the bis(monoalkylamino)maleonitriles, which are bearing a 2-pyridyl unit as an additional complexing unit, are able to selectively recognize copper(II) by a color change from yellow to red. KW - copper KW - fumaronitrile KW - ligands KW - macrocycles KW - maleonitrile Y1 - 2021 U6 - https://doi.org/10.1002/hlca.202100028 SN - 1522-2675 VL - 104 IS - 6 SP - e2100028 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Schwarze, Thomas A1 - Kelling, Alexandra A1 - Sperlich, Eric A1 - Holdt, Hans-Jürgen T1 - Influence of regioisomerism in 9-anthracenyl-substituted dithiodicyanoethene derivatives on photoinduced electron transfer controlled by intramolecular charge transfer JF - ChemPhotoChem N2 - In this paper, we report on the fluorescence behaviour of three regioisomers which consist of two 9-anthracenyl fluorophores and of differently substituted dithiodicyanoethene moieties. These isomeric fluorescent probes show different quantum yields (phi(f)). In these probes, an oxidative photoinduced electron transfer (PET) from the excited 9-anthracenyl fluorophore to the dithiodicyanoethene unit quenches the fluorescence. This quenching process is accelerated by an intramolecular charge transfer (ICT) of the push-pull pi-electron system of the dithiodicyanoethene group. The acceleration of the PET depends on the strength of the ICT unit. The higher the dipole moment of the ICT unit, the stronger the observed fluorescence quenching. To the best of our knowledge, this is the first report of a regioisomeric influence on an oxidative PET by an ICT. KW - anthracene KW - charge transfer KW - electron transfer KW - fluorescence KW - isomerism Y1 - 2021 U6 - https://doi.org/10.1002/cptc.202100070 SN - 2367-0932 VL - 5 IS - 10 SP - 911 EP - 914 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Starke, Ines A1 - Koch, Andreas A1 - Kammer, Stefan A1 - Holdt, Hans-Jürgen A1 - Möller, Heiko Michael T1 - Electrospray mass spectrometry and molecular modeling study of formation and stability of silver complexes with diazaperylene and bisisoquinoline JF - Journal of mass spectrometry N2 - The complex formation of the following diazaperylene ligands (L) 1,12-diazaperylene 1, 1,1-bisisoquinoline 2, 2,11-disubstituted 1,12-diazaperylenes (alkyl=methyl, ethyl, isopropyl, 3, 5, 7), 3,3-disubstituted 1,1-bisisoquinoline (alkyl=methyl, ethyl, isopropyl, 4, 6, 8 and with R=phenyl, 11 and with pyridine 12), and the 5,8-dimethoxy-substituted diazaperylene 9, 6,6-dimethoxy-substituted bisisoquinoline 10 with AgBF4 was investigated. Collision-induced dissociation measurements were used to evaluate the relative stabilities of the ligands themselves and for the [1:1](+) complexes as well as for the homoleptic and heteroleptic silver [1:2](+) complexes in the gas phase. This method is very useful in rapid screening of the stabilities of new complexes in the gas phase. The influence of the spatial arrangement of the ligands and the type of substituents employed for the complexation were examined. The effect of the preorganization of the diazaperylene on the threshold activation voltages and thus of the relative binding energies of the different complexes are discussed. Density functional theory calculations were used to calculate the optimized structures of the silver complexes and compared with the stabilities of the complexes in the gas phase for the first time. KW - electrospray ionization mass spectrometry and modeling KW - silver(1) complexes KW - stability Y1 - 2018 U6 - https://doi.org/10.1002/jms.4071 SN - 1076-5174 SN - 1096-9888 VL - 53 IS - 5 SP - 408 EP - 418 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Schwarze, Thomas A1 - Riemer, Janine A1 - Holdt, Hans-Jürgen T1 - A Ratiometric Fluorescent Probe for K+ in Water Based on a Phenylaza-18-Crown-6 Lariat Ether JF - Chemistry - a European journal N2 - This work presents two molecular fluorescent probes 1 and 2 for the selective determination of physiologically relevant K+ levels in water based on a highly K+/Na+ selective building block, the o-(2-methoxyethoxy)phenylaza-18-crown-6 lariat ether unit. Fluorescent probe 1 showed a high K+-induced fluorescence enhancement (FE) by a factor of 7.7 of the anthracenic emission and a dissociation constant (K-d) value of 38mm in water. Further, for 2+K+, we observed a dual emission behavior at 405 and 505nm. K+ increases the fluorescence intensity of 2 at 405nm by a factor of approximately 4.6 and K+ decreases the fluorescence intensity at 505nm by a factor of about 4.8. Fluorescent probe 2+K+ exhibited a K-d value of approximately 8mm in Na+-free solutions and in combined K+/Na+ solution a similar K-d value of about 9mm was found, reflecting the high K+/Na+ selectivity of 2 in water. Therefore, 2 is a promising fluorescent tool to measure ratiometrically and selectively physiologically relevant K+ levels. KW - charge transfer KW - crown compounds KW - fluorescence KW - potassium KW - ratiometric sensors Y1 - 2018 U6 - https://doi.org/10.1002/chem.201802306 SN - 0947-6539 SN - 1521-3765 VL - 24 IS - 40 SP - 10116 EP - 10121 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Mondal, Suvendu Sekhar A1 - Kreuzer, Alex A1 - Behrens, Karsten A1 - Schütz, Gisela A1 - Holdt, Hans-Jürgen A1 - Hirscher, Michael T1 - Systematic experimental study on quantum sieving of hydrogen isotopes in metal-amide-imidazolate frameworks with narrow 1-D channels JF - ChemPhysChem : a European journal of chemical physics and physical chemistry N2 - Quantum sieving of hydrogen isotopes is experimentally studied in isostructural hexagonal metal-organic frameworks having 1-D channels, named IFP-1, -3, -4 and -7. Inside the channels, different molecules or atoms restrict the channel diameter periodically with apertures larger (4.2 angstrom for IFP-1, 3.1 angstrom for IFP-3) and smaller (2.1 angstrom for IFP-7, 1.7 angstrom for IFP-4) than the kinetic diameter of hydrogen isotopes. From a geometrical point of view, no gas should penetrate into IFP-7 and IFP-4, but due to the thermally induced flexibility, so-called gate-opening effect of the apertures, penetration becomes possible with increasing temperature. Thermal desorption spectroscopy (TDS) measurements with pure H-2 or D-2 have been applied to study isotope adsorption. Further TDS experiments after exposure to an equimolar H-2/D-2 mixture allow to determine directly the selectivity of isotope separation by quantum sieving. IFP-7 shows a very low selectivity not higher than S=2. The selectivity of the materials with the smallest pore aperture IFP-4 has a constant value of S approximate to 2 for different exposure times and pressures, which can be explained by the 1-D channel structure. Due to the relatively small cavities between the apertures of IFP-4 and IFP-7, molecules in the channels cannot pass each other, which leads to a single-file filling. Therefore, no time dependence is observed, since the quantum sieving effect occurs only at the outermost pore aperture, resulting in a low separation selectivity. KW - gas adsorption KW - hydrogen isotopes KW - isotope separation KW - metal-organic frameworks KW - quantum sieving Y1 - 2019 U6 - https://doi.org/10.1002/cphc.201900183 SN - 1439-4235 SN - 1439-7641 VL - 20 IS - 10 SP - 1311 EP - 1315 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Alrefai, Anas A1 - Mondal, Suvendu Sekhar A1 - Wruck, Alexander A1 - Kelling, Alexandra A1 - Schilde, Uwe A1 - Brandt, Philipp A1 - Janiak, Christoph A1 - Schoenfeld, Sophie A1 - Weber, Birgit A1 - Rybakowski, Lawrence A1 - Herrman, Carmen A1 - Brennenstuhl, Katlen A1 - Eidner, Sascha A1 - Kumke, Michael Uwe A1 - Behrens, Karsten A1 - Günter, Christina A1 - Müller, Holger A1 - Holdt, Hans-Jürgen T1 - Hydrogen-bonded supramolecular metal-imidazolate frameworks: gas sorption, magnetic and UV/Vis spectroscopic properties JF - Journal of Inclusion Phenomena and Macrocyclic Chemistry N2 - By varying reaction parameters for the syntheses of the hydrogen-bonded metal-imidazolate frameworks (HIF) HIF-1 and HIF-2 (featuring 14 Zn and 14 Co atoms, respectively) to increase their yields and crystallinity, we found that HIF-1 is generated in two different frameworks, named as HIF-1a and HIF-1b. HIF-1b is isostructural to HIF-2. We determined the gas sorption and magnetic properties of HIF-2. In comparison to HIF-1a (Brunauer-Emmett-Teller (BET) surface area of 471m(2) g(-1)), HIF-2 possesses overall very low gas sorption uptake capacities [BET(CO2) surface area=85m(2) g(-1)]. Variable temperature magnetic susceptibility measurement of HIF-2 showed antiferromagnetic exchange interactions between the cobalt(II) high-spin centres at lower temperature. Theoretical analysis by density functional theory confirmed this finding. The UV/Vis-reflection spectra of HIF-1 (mixture of HIF-1a and b), HIF-2 and HIF-3 (with 14 Cd atoms) were measured and showed a characteristic absorption band centered at 340nm, which was indicative for differences in the imidazolate framework. KW - Gas-sorption KW - Ligand design KW - Magnetic properties KW - Supramolecular chemistry KW - Solvothermal synthesis Y1 - 2019 U6 - https://doi.org/10.1007/s10847-019-00926-6 SN - 1388-3127 SN - 1573-1111 VL - 94 IS - 3-4 SP - 155 EP - 165 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Schwarze, Thomas A1 - Riemer, Janine A1 - Müller, Holger A1 - John, Leonard A1 - Holdt, Hans-Jürgen A1 - Wessig, Pablo T1 - Na+ Selective Fluorescent Tools Based on Fluorescence Intensity Enhancements, Lifetime Changes, and on a Ratiometric Response JF - Chemistry - a European journal N2 - Over the years, we developed highly selective fluorescent probes for K+ in water, which show K+-induced fluorescence intensity enhancements, lifetime changes, or a ratiometric behavior at two emission wavelengths (cf. Scheme 1, K1-K4). In this paper, we introduce selective fluorescent probes for Na+ in water, which also show Na+ induced signal changes, which are analyzed by diverse fluorescence techniques. Initially, we synthesized the fluorescent probes 2, 4, 5, 6 and 10 for a fluorescence analysis by intensity enhancements at one wavelength by varying the Na+ responsive ionophore unit and the fluorophore moiety to adjust different K-d values for an intra- or extracellular Na+ analysis. Thus, we found that 2, 4 and 5 are Na+ selective fluorescent tools, which are able to measure physiologically important Na+ levels at wavelengths higher than 500 nm. Secondly, we developed the fluorescent probes 7 and 8 to analyze precise Na+ levels by fluorescence lifetime changes. Herein, only 8 (K-d=106 mm) is a capable fluorescent tool to measure Na+ levels in blood samples by lifetime changes. Finally, the fluorescent probe 9 was designed to show a Na+ induced ratiometric fluorescence behavior at two emission wavelengths. As desired, 9 (K-d=78 mm) showed a ratiometric fluorescence response towards Na+ ions and is a suitable tool to measure physiologically relevant Na+ levels by the intensity change of two emission wavelengths at 404 nm and 492 nm. KW - crown compounds KW - fluorescence lifetime KW - fluorescent probes KW - ratiometric KW - sodium Y1 - 2019 U6 - https://doi.org/10.1002/chem.201902536 SN - 0947-6539 SN - 1521-3765 VL - 25 IS - 53 SP - 12412 EP - 12422 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Mondal, Suvendu Sekhar A1 - Dey, Subarna A1 - Attallah, Ahmed G. A1 - Krause-Rehberg, Reinhard A1 - Janiak, Christoph A1 - Holdt, Hans-Jürgen T1 - Insights into the pores of microwave-assisted metal-imidazolate frameworks showing enhanced gas sorption JF - Dalton transactions : a journal of inorganic chemistry, including bioinorganic, organometallic, and solid-state chemistry N2 - Microwave heating (MW)-assisted synthesis has been widely applied as an alternative method for the chemical synthesis of organic and inorganic materials. In this work, we report MW-assisted synthesis of three isostructural 3D frameworks with a flexible linker arm of the chelating linker 2-substituted imidazolate- 4-amide-5-imidate, named IFP-7-MW (M = Zn, R = OMe), IFP-8-MW (M = Co; R = OMe) and IFP-10-MW (M = Co; R = OEt) (IFP = Imidazolate Framework Potsdam). These chelating ligands were generated in situ by partial hydrolysis of 2-substituted 4,5-dicyanoimidazoles under MW-and also conventional electrical heating (CE)-assisted conditions in DMF. The structure of these materials was determined by IR spectroscopy and powder X-ray diffraction (PXRD) and the identity of the materials synthesized under CE-conditions was established. Materials obtained from MW-heating show many fold enhancement of CO2 and H-2 uptake capacities, compared to the analogous CE-heating method based materials. To understand the inner pore-sizes of IFP structures and variations of gas sorptions, we performed positron annihilation lifetime spectroscopy (PALS), which shows that MW-assisted materials have smaller pore sizes than materials synthesized under CE-conditions. The "kinetically controlled" MW-synthesized material has an inherent ability to trap extra linkers, thereby reducing the pore sizes of CE-materials to ultra/micropores. These ultramicropores are responsible for high gas sorption. Y1 - 2017 U6 - https://doi.org/10.1039/c7dt00350a SN - 1477-9226 SN - 1477-9234 VL - 46 SP - 4824 EP - 4833 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Schwarze, Thomas A1 - Mueller, Holger A1 - Schmidt, Darya A1 - Riemer, Janine A1 - Holdt, Hans-Jürgen T1 - Design of Na+-Selective Fluorescent Probes: A Systematic Study of the Na+-Complex Stability and the Na+/K+ Selectivity in Acetonitrile and Water JF - Chemistry - a European journal N2 - There is a tremendous demand for highly Na+-selective fluoroionophores to monitor the top analyte Na+ in life science. Here, we report a systematic route to develop highly Na+/K+ selective fluorescent probes. Thus, we synthesized a set of fluoroionophores 1, 3, 4, 5, 8 and 9 (see Scheme 1) to investigate the Na+/K+ selectivity and Na(+-)complex stability in CH3CN and H2O. These Na+-probes bear different 15-crown-5 moieties to bind Na+ stronger than K+. In the set of the diethylaminocoumarin-substituted fluoroionophores 1-5, the following trend of fluorescence quenching 1 > 3 > 2 > 4 > 5 in CH3CN was observed. Therefore, the flexibility of the aza-15-crown-5 moieties in 1-4 determines the conjugation of the nitrogen lone pair with the aromatic ring. As a consequence, 1 showed in CH3CN the highest Na+-induced fluorescence enhancement (FE) by a factor of 46.5 and a weaker K+ induced FE of 3.7. The Na+-complex stability of 1-4 in CH3CN is enhanced in the following order of 2 > 4 > 3 > 1, assuming that the O-atom of the methoxy group in the ortho-position, as shown in 2, strengthened the Na+-complex formation. Furthermore, we found for the N( o-methoxyphenyl) aza-15-crown-5 substituted fluoroionophores 2, 8 and 9 in H2O, an enhanced Na+-complex stability in the following order 8 > 2 > 9 and an increased Na+/K+ selectivity in the reverse order 9 > 2 > 8. Notably, the Na+-induced FE of 8 (FEF = 10.9), 2 (FEF = 5.0) and 9 (FEF = 2.0) showed a similar trend associated with a decreased K+-induced FE [8 (FEF = 2.7) > 2 (FEF = 1.5) > 9 (FEF = 1.1)]. Here, the Na+-complex stability and Na+/K+ selectivity is also influenced by the fluorophore moiety. Thus, fluorescent probe 8 (K-d = 48 mm) allows high-contrast, sensitive, and selective Na+ measurements over extracellular K+ levels. A higher Na+/K+ selectivity showed fluorescent probe 9, but also a higher Kd value of 223 mm. Therefore, 9 is a suitable tool to measure Na+ concentrations up to 300 mm at a fluorescence emission of 614 nm. KW - crown compounds KW - fluorescence KW - fluorescent probes KW - potassium KW - sodium Y1 - 2017 U6 - https://doi.org/10.1002/chem.201605986 SN - 0947-6539 SN - 1521-3765 VL - 23 SP - 7255 EP - 7263 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Grunwald, Nicolas A1 - Kelling, Alexandra A1 - Holdt, Hans-Jürgen A1 - Schilde, Uwe T1 - The crystal structure of 1,1′-bisisoquinoline, C18H12N2 JF - Zeitschrift für Kristallographie : international journal for structural, physical and chemical aspects of crystalline materials ; New crystal structures N2 - C18H12N2, tetragonal, I4(1)/a (no. 88), a = 13.8885(6) angstrom, c = 13.6718(6) angstrom, V = 2637.2(3) angstrom(3), Z = 8, R-gt(F) = 0.0295, wR(ref)(F-2) = 0.0854, T = 210 K. Y1 - 2017 U6 - https://doi.org/10.1515/ncrs-2017-0088 SN - 1433-7266 VL - 232 SP - 839 EP - 841 PB - De Gruyter CY - Berlin ER - TY - JOUR A1 - Mondal, Suvendu Sekhar A1 - Hovestadt, Maximilian A1 - Dey, Subarna A1 - Paula, Carolin A1 - Glomb, Sebastian A1 - Kelling, Alexandra A1 - Schilde, Uwe A1 - Janiak, Christoph A1 - Hartmann, Martin A1 - Holdt, Hans-Jürgen T1 - Synthesis of a partially fluorinated ZIF-8 analog for ethane/ethene separation JF - CrystEngComm N2 - The separation of ethane/ethene mixtures (as well as other paraffin/olefin mixtures) is one of the most important but challenging processes in the petrochemical industry. In this work, we report the synthesis of ZIF-318, isostructural to ZIF-8 but built from the mixed linkers of 2-methylimidazole (L1) and 2-trifluoromethylimidazole (L2) (ZIF-318 = [(Zn(L1)(L2)](n)). The synthesis has been optimized to proceed without ZnO-formation. Using only the L2 linker under solvothermal conditions afforded ZnO-embedded in the H-bonded and non-porous coordination polymer ZnO@[Zn-2(L2)(2)(HCOO)(OH)](n). The slight differences in the size of the substituents (-CH3 vs. -CF3) possibly in combination with different electronic inductive effects led to small but significant changes to the pore size and properties respectively, though the effective pore opening (aperture) size of ZIF-318 remained the same in comparison with ZIF-8. ZIF-318 is chemically (boiling water, methanol, benzene, and wide pH range at room temperature for 1 day), thermally (up to 310 degrees C) stable, and more hydrophobic than ZIF-8 which is proven by contact angle measurement. ZIF-318 can be activated for N-2, CO2, CH4, H-2, ethane, ethane, propane, and propene gases sorptions. Consequently, in breakthrough experiments, the ethane/ethene mixtures can be separated. Y1 - 2017 U6 - https://doi.org/10.1039/c7ce01438d SN - 1466-8033 VL - 19 SP - 5882 EP - 5891 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Hovestadt, Maximilian A1 - Bendt, Stephan A1 - Mondal, Suvendu Sekhar A1 - Behrens, Karsten A1 - Reif, Florian A1 - Dopken, Merle A1 - Holdt, Hans-Jürgen A1 - Keil, Frerich J. A1 - Hartmann, Martin T1 - Experimental and Theoretical Analysis of the Influence of Different Linker Molecules in Imidazolate Frameworks Potsdam (IFP-n) on the Separation of Olefin-Paraffin Mixtures JF - Langmuir N2 - Four metal organic frameworks with similar topology but different chemical environment inside the pore structure, namely, IFP-1, IFP-3, IFP-5, and IFP-7, have been investigated with respect to the separation potential for olefin paraffin mixtures as well as the influence of the different linkers on adsorption properties using experiments and Monte Carlo simulations. All IFP structures show a higher adsorption of ethane compared to ethene with the exception of IFP-7 which shows no selectivity in breakthrough experiments. For propane/propane separation, all adsorbents show a higher adsorption for the olefin. The experimental results agree quite well with the simulated values except for the IFP-7, which is presumably due to the flexibility of the structure. Moreover, the experimental and simulated isotherms were confirmed with breakthrough experiments that render IFP-1, IFP-3, and IFP-5 as suitable for the purification of ethene from ethane. Y1 - 2017 U6 - https://doi.org/10.1021/acs.langmuir.7b02016 SN - 0743-7463 VL - 33 SP - 11170 EP - 11179 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Schwarze, Thomas A1 - Mertens, Monique A1 - Mueller, Peter A1 - Riemer, Janine A1 - Wessig, Pablo A1 - Holdt, Hans-Jürgen T1 - Highly K+-Selective Fluorescent Probes for Lifetime Sensing of K+ in Living Cells JF - Chemistry - a European journal N2 - The new K+-selective fluorescent probes 1 and 2 were obtained by Cu-I-catalyzed 1,3-dipolar azide alkyne cycloaddition (CuAAC) reactions of an alkyne-substituted [1,3]dioxolo[4,5-f][1,3]benzodioxole (DBD) ester fluorophore with azido-functionalized N-phenylaza-18-crown-6 ether and N-(o-isopropoxy) phenylaza-18-crown-6 ether, respectively. Probes 1 and 2 allow the detection of K+ in the presence of Na+ in water by fluorescence enhancement (2.2 for 1 at 2000mm K+ and 2.5 for 2 at 160mm K+). Fluorescence lifetime measurements in the absence and presence of K+ revealed bi-exponential decay kinetics with similar lifetimes, however with different proportions changing the averaged fluorescence decay times ((f(av))). For 1 a decrease of (f(av)) from 12.4 to 9.3ns and for 2 an increase from 17.8 to 21.8ns was observed. Variation of the substituent in ortho position of the aniline unit of the N-phenylaza-18-crown-6 host permits the modulation of the K-d value for a certain K+ concentration. For example, substitution of H in 1 by the isopropoxy group (2) decreased the K-d value from >300mm to 10mm. 2 was chosen for studying the efflux of K+ from human red blood cells (RBC). Upon addition of the Ca2+ ionophor ionomycin to a RBC suspension in a buffer containing Ca2+, the fluorescence of 2 slightly rose within 10min, however, after 120min a significant increase was observed. KW - electron transfer KW - fluorescence lifetime KW - fluorescent probes KW - living cells KW - potassium Y1 - 2017 U6 - https://doi.org/10.1002/chem.201704368 SN - 0947-6539 SN - 1521-3765 VL - 23 SP - 17186 EP - 17190 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Brietzke, Thomas Martin A1 - Kelling, Alexandra A1 - Schilde, Uwe A1 - Mickler, Wulfhard A1 - Holdt, Hans-Jürgen T1 - Heterodinuclear Ruthenium(II) Complexes of the Bridging Ligand 1,6,7,12-Tetraazaperylene with Iron(II), Cobalt(II), Nickel(II), as well as Palladium(II) and Platinum(II) JF - Zeitschrift für anorganische und allgemeine Chemie N2 - The first heterodinuclear ruthenium(II) complexes of the 1,6,7,12-tetraazaperylene (tape) bridging ligand with iron(II), cobalt(II), and nickel(II) were synthesized and characterized. The metal coordination sphere in this complexes is filled by the tetradentate N,N-dimethyl-2,11-diaza[3.3](2,6)-pyridinophane (L-N4Me2) ligand, yielding complexes of the general formula [(L-N4Me2)Ru(mu-tape)M(L-N4Me2)](ClO4)(2)(PF6)(2) with M = Fe {[2](ClO4)(2)(PF6)(2)}, Co {[3](ClO4)(2)(PF6)(2)}, and Ni {[4](ClO4)(2)(PF6)(2)}. Furthermore, the heterodinuclear tape ruthenium(II) complexes with palladium(II)- and platinum(II)-dichloride [(bpy)(2)Ru(-tape)PdCl2](PF6)(2) {[5](PF6)(2)} and [(dmbpy)(2)Ru(-tape)PtCl2](PF6)(2) {[6](PF6)(2)}, respectively were also prepared. The molecular structures of the complex cations [2](4+) and [4](4+) were discussed on the basis of the X-ray structures of [2](ClO4)(4)MeCN and [4](ClO4)(4)MeCN. The electrochemical behavior and the UV/Vis absorption spectra of the heterodinuclear tape ruthenium(II) complexes were explored and compared with the data of the analogous mono- and homodinuclear ruthenium(II) complexes of the tape bridging ligand. KW - N ligands KW - Ruthenium KW - Structure elucidation KW - Charge transfer KW - Electrochemistry Y1 - 2016 U6 - https://doi.org/10.1002/zaac.201500645 SN - 0044-2313 SN - 1521-3749 VL - 642 SP - 8 EP - 13 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Baier, Heiko A1 - Kelling, Alexandra A1 - Schilde, Uwe A1 - Holdt, Hans-Jürgen T1 - Investigation of the Catalytic Activity of a 2-Phenylidenepyridine Palladium(II) Complex Bearing 4,5-Dicyano-1,3-bis(mesityl)imidazol-2-ylidene in the Mizoroki-Heck Reaction JF - Zeitschrift für anorganische und allgemeine Chemie N2 - The phenylidenepyridine (ppy) palladacycles [PdCl(ppy)(IMes)] (4) [IMes = 1,3-bis(mesityl) imidazol-2-ylidene] and [PdCl(ppy){(CN)(2)IMes}] (6) [(CN)(2)IMes = 4,5-dicyano-1,3-bis(mesityl) imidazol-2-ylidene] were prepared by facile two step syntheses, starting with the reaction of palladium(II) chloride with 2-phenylpyridine followed by subsequent addition of the NHC ligand to the precatalyst precursor [PdCl(ppy)](2). Suitable crystals for the X-ray analysis of the complexes 4 and 6 were obtained. It was shown that 6 has a shorter NHC-palladium bond than the IMes complex 4. The difference of the palladium carbene bond lengths based on the higher pi-acceptor strength of (CN)(2)IMes in comparison to IMes. Thus, (CN)(2)IMes should stabilize the catalytically active central palladium atom better than IMes. As a measure for the pi-acceptor strength of (CN)(2)IMes compared to IMes, the selone (CN)(2)IMes center dot Se (7) was prepared and characterized by Se-77-NMR spectroscopy. The pi-acceptor strength of 7 was illuminated by the shift of its Se-77-NMR signal. The Se-77-NMR signal of 7 was shifted to much higher frequencies than the Se-77-NMR signal of IMes center dot Se. Catalytic experiments using the Mizoroki-Heck reaction of aryl chlorides with n-butyl acrylate showed that 6 is the superior performer in comparison to 4. Using complex 6, an extensive substrate screening of 26 different aryl bromides with n-butyl acrylate was performed. Complex 6 is a suitable precatalyst for para-substituted aryl bromides. The catalytically active species was identified by mercury poisoning experiments to be palladium nanoparticles. KW - Carbene ligands KW - Heck reaction KW - Palladium KW - Selenium KW - C-C coupling Y1 - 2016 U6 - https://doi.org/10.1002/zaac.201500625 SN - 0044-2313 SN - 1521-3749 VL - 642 SP - 140 EP - 147 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Mondal, Suvendu Sekhar A1 - Marquardt, Dorothea A1 - Janiak, Christoph A1 - Holdt, Hans-Jürgen T1 - Use of a 4,5-dicyanoimidazolate anion based ionic liquid for the synthesis of iron and silver nanoparticles JF - Dalton transactions : a journal of inorganic chemistry, including bioinorganic, organometallic, and solid-state chemistry N2 - Sixteen new ionic liquids (ILs) with tetraethylammonium, 1-butyl-3-methylimidazolium, 3-methyl-1-octylimidazolium and tetrabutylphosphonium cations paired with 2-substituted 4,5-dicyanoimidazolate anions (substituent at C2 = methyl, trifluoromethyl, pentafluoroethyl, N,N′-dimethyl amino and nitro) have been synthesized and characterized by using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA). The effects of cation and anion type and structure of the resulting ILs, including several room temperature ionic liquids (RTILs), are reflected in the crystallization, melting points and thermal decomposition of the ILs. ILs exhibited large liquid and crystallization ranges and formed glasses on cooling with glass transition temperatures in the range of −22 to −71 °C. We selected one of the newly designed ILs due to its bigger size, compared to the common conventional IL anion and high electron-withdrawing nitrile group leads to an overall stabilization anion that may stabilize the metal nanoparticles. Stable and better separated iron and silver nanoparticles are obtained by the decomposition of corresponding Fe2(CO)9 and AgPF6, respectively, under N2-atmosphere in newly designed nitrile functionalized 4,5-dicyanoimidazolate anion based IL. Very small and uniform size for Fe-nanoparticles of about 1.8 ± 0.6 nm were achieved without any additional stabilizers or capping molecules. Comparatively bigger size of Ag-nanoparticles was obtained through the reduction of AgPF6 by hydrogen gas. Additionally, the AgPF6 precursor was decomposed under microwave irradiation (MWI), fabricating nut-in-shell-like, that is, core-separated-from-shell Ag-nano-structures. Y1 - 2016 U6 - https://doi.org/10.1039/c6dt00225k SN - 1477-9226 SN - 1477-9234 VL - 45 SP - 5476 EP - 5483 PB - Royal Society of Chemistry CY - Cambridge ER - TY - GEN A1 - Mondal, Suvendu Sekhar A1 - Holdt, Hans-Jürgen T1 - Breaking Down Chemical Weapons by Metal-Organic Frameworks T2 - Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition N2 - Seek and destroy: Filtration schemes and self-detoxifying protective fabrics based on the ZrIV-containing metal—organic frameworks (MOFs) MOF-808 and UiO-66 doped with LiOtBu have been developed that capture and hydrolytically detoxify simulants of nerve agents and mustard gas. Both MOFs function as highly catalytic elements in these applications. KW - heterogeneous catalysis KW - hydrolysis KW - metalorganic frameworks KW - nerve agents KW - silk fibroin Y1 - 2016 U6 - https://doi.org/10.1002/anie.201508407 SN - 1433-7851 SN - 1521-3773 VL - 55 SP - 42 EP - 44 PB - Wiley-VCH CY - Weinheim ER -