TY - JOUR A1 - Wang, Li A1 - Baudis, Stefan A1 - Kratz, Karl A1 - Lendlein, Andreas T1 - Characterization of bi-layered magnetic nanoparticles synthesized via two-step surface-initiated ring-opening polymerization JF - Pure and applied chemistry : official journal of the International Union of Pure and Applied Chemistry N2 - A versatile strategy to integrate multiple functions in a polymer based material is the formation of polymer networks with defined nanostructures. Here, we present synthesis and comprehensive characterization of covalently surface functionalized magnetic nanoparticles (MNPs) comprising a bi-layer oligomeric shell, using Sn(Oct)(2) as catalyst for a two-step functionalization. These hydroxy-terminated precursors for degradable magneto-and thermo-sensitive polymer networks were prepared via two subsequent surfaceinitiated ring-opening polymerizations (ROPs) with omega-pentadecalactone and e-caprolactone. A two-step mass loss obtained in thermogravimetric analysis and two distinct melting transitions around 50 and 85 degrees C observed in differential scanning calorimetry experiments, which are attributed to the melting of OPDL and OCL crystallites, confirmed a successful preparation of the modified MNPs. The oligomeric coating of the nanoparticles could be visualized by transmission electron microscopy. The investigation of degrafted oligomeric coatings by gel permeation chromatography and H-1-NMR spectroscopy showed an increase in number average molecular weight as well as the presence of signals related to both of oligo(omega-pentadecalactone) (OPDL) and oligo(e-caprolactone) (OCL) after the second ROP. A more detailed analysis of the NMR results revealed that only a few.-pentadecalactone repeating units are present in the degrafted oligomeric bi-layers, whereby a considerable degree of transesterification could be observed when OPDL was polymerized in the 2nd ROP step. These findings are supported by a low degree of crystallinity for OPDL in the degrafted oligomeric bi-layers obtained in wide angle X-ray scattering experiments. Based on these findings it can be concluded that Sn(Oct)(2) was suitable as catalyst for the preparation of nanosized bi-layered coated MNP precursors by a two-step ROP. KW - degradable polyester KW - magnetic nanoparticles KW - nanoparticle characterization KW - NICE-2014 KW - ring opening polymerization KW - surface functionalization Y1 - 2015 U6 - https://doi.org/10.1515/pac-2015-0607 SN - 0033-4545 SN - 1365-3075 VL - 87 IS - 11-12 SP - 1085 EP - 1097 PB - De Gruyter CY - Berlin ER - TY - THES A1 - Wang, Li T1 - Reprogrammable, magnetically controlled polymer actuators T1 - Reprogrammierbar, magnetisch gesteuerte Polymeraktuatoren N2 - Polymeric materials, which can perform reversible shape changes after programming, in response to a thermal or electrical stimulation, can serve as (soft) actuating components in devices like artificial muscles, photonics, robotics or sensors. Such polymeric actuators can be realized with hydrogels, liquid crystalline elastomers, electro-active polymers or shape-memory polymers by controlling with stumuli such as heat, light, electrostatic or magnetic field. If the application conditions do not allow the direct heating or electric stimulation of these smart devices, noncontact triggering will be required. Remotely controlled actuation have been reported for liquid crystalline elastomer composites or shape-memory polymer network composites, when a persistent external stress is applied during inductive heating in an alternating magnetic field. However such composites cannot meet the demands of applications requiring remotely controlled free-standing motions of the actuating components. The current thesis investigates, whether a reprogrammable remotely controlled soft actuator can be realized by magneto-sensitive multiphase shape-memory copolymer network composites containing magnetite nanoparticles as magneto-sensitive multivalent netpoints. A central hypothesis was that a magnetically controlled two-way (reversible bidirectional) shape-memory effect in such nanocomposites can be achieved without application of external stress (freestanding), when the required orientation of the crystallizable actuation domains (ADs) can be ensured by an internal skeleton like structure formed by a second crystallizable phase determing the samples´s geometry, while magneto-sensitive iron oxide nanoparticles covalently integrated in the ADs allow remote temperature control. The polymer matrix of these composites should exhibit a phase-segregated morphology mainly composed of cyrstallizable ADs, whereby a second set of higher melting crystallites can take a skeleton like, geometry determining function (geometry determining domains, GDs) after programming of the composite and in this way the orientation of the ADs is established and maintained during actuation. The working principle for the reversible bidirectional movements in the multiphase shape-memory polymer network composite is related to a melting-induced contraction (MIC) during inductive heating and the crystallization induced elongation (CIE) of the oriented ADs during cooling. Finally, the amount of multivalent magnetosensitive netpoints in such a material should be as low as possible to ensure an adequate overall elasticity of the nanocomposite and at the same time a complete melting of both ADs and GDs via inductive heating, which is mandatory for enabling reprogrammability. At first, surface decorated iron oxide nanoparticles were synthesized and investigated. The coprecipitation method was applied to synthesize magnetic nanoparticles (mNPs) based on magnetite with size of 12±3 nm and in a next step a ring-opening polymerization (ROP) was utilized for covalent surface modification of such mNPs with oligo(ϵ-caprolactone) (OCL) or oligo(ω-pentadecalactone) (OPDL) via the “grafting from” approach. A successful coating of mNPs with OCL and OPDL was confirmed by differential scanning calorimetry (DSC) experiments showing melting peaks at 52±1 °C for mNP-OCL and 89±1 °C for mNP-OPDL. It was further explored whether two-layered surface decorated mNPs, can be prepared via a second surface-initiated ROP of mNP-OCL or mNP-OPDL with ω-pentadecalactone or ϵ-caprolactone. The observation of two distinct melting transitions in DSC experiments as well as the increase in molecular weight of the detached coatings determined by GPC and 1H-NMR indicated a successful synthesis of the twolayered nanoparticles mNP-OCL-OPDL and mNP-OPDL-OCL. In contrast TEM micrographs revealed a reduction of the thickness of the polymeric coating on the nanoparticles after the second ROP, indicating that the applied synthesis and purification required further optimization. For evaluating the impact of the dispersion of mNPs within a polymer matrix on the resulting inductive heating capability of composites, plain mNPs as well as OCL coated magnetite nanoparticles (mNP-OCLs) were physically incorporated into crosslinked poly(ε-caprolactone) (PCL) networks. Inductive heating experiments were performed with both networks cPCL/mNP and cPCL/mNP-OCL in an alternating magnetic field (AMF) with a magnetic field strength of H = 30 kA·m-1. Here a bulk temperature of Tbulk = 74±2 °C was achieved for cPCL/mNP-OCL, which was almost 20 °C higher than the melting transition of the PCL-based polymer matrix. In contrast, the composite with plain mNPs could only reach a Tbulk of 48±2 °C, which is not sufficient for a complete melting of all PCL crystallites as required for actuation. The inductive heating capability of a multiphase copolymer nanocomposite network (designed as soft actuators) containing surface decorated mNPs as covalent netpoints was investigated. Such composite was synthesized from star-shaped OCL and OPDL precursors, as well as mNP-OCLs via reaction with HDI. The weight ratio of OPDL and OCL in the starting reaction mixture was 15/85 (wt%/wt%) and the amount of iron oxide in the nanocomposite was 4 wt%. DSC experiments revealed two well separated melting and crystallization peaks confirming the required phase-segregated morphology in the nanocomposite NC-mNP-OCL. TEM images could illustrate a phase-segregated morphology of the polymer matrix on the microlevel with droplet shaped regions attributed to the OPDL domains dispersed in an OCL matrix. The TEM images could further demonstrate that the nanoparticulate netpoints in NC-mNP-OCL were almost homogeneously dispersed within the OCL domains. The tests of the inductive heating capability of the nanocomposites at a magnetic field strength of Hhigh = 11.2 kA·m-1 revealed a achievable plateau surface temperature of Tsurf = 57±1 °C for NC-mNP-OCL recorded by an infrared video camera. An effective heat generation constant (̅P) can be derived from a multi-scale model for the heat generation, which is proportional to the rate of heat generation per unit volume of the sample. NC-mNP-OCL with homogeneously dispersed mNP-OCLs exhibited a ̅P value of 1.04±0.01 K·s- 1 at Hhigh, while at Hreset = 30.0 kA·m-1 a Tsurf of 88±1 °C (where all OPDL related crystallite are molten) and a ̅P value of 1.93±0.02 K·s-1 was obtained indicating a high magnetic heating capability of the composite. The free-standing magnetically-controlled reversible shape-memory effect (mrSME) was explored with originally straight nanocomposite samples programmed by bending to an angle of 180°. By switching the magnetic field on and off the composite sample was allowed to repetitively heat to 60 °C and cool to the ambient temperature. A pronounced mrSME, characterized by changes in bending angle of Δϐrev = 20±3° could be obtained for a composite sample programmed by bending when a magnetic field strength of Hhigh = 11.2 kA·m-1 was applied in a multi-cyclic magnetic bending experiment with 600 heating-cooling cycles it could be shown that the actuation performance did not change with increasing number of test cycles, demonstrating the accuracy and reproducibility of this soft actuator. The degree of actuation as well as the kinetics of the shape changes during heating could be tuned by variation of the magnetic filed strength between Hlow and Hhigh or the magnetic field exposure time. When Hreset = 30.0 kA·m-1 was applied the programmed geometry was erased and the composite sample returned to it´s originally straight shape. The reprogrammability of the nanocomposite actuators was demonstrated by one and the same test specimen first exhibiting reversible angle changes when programmed by bending, secondly reprogrammed to a concertina, which expands upon inductive heating and contracts during cooling and finally reprogrammed to a clip like shape, which closes during cooling and opens when Hhigh was applied. In a next step the applicability of the presented remote controllable shape-memory polymer actuators was demonstrated by repetitive opening and closing of a multiring device prepared from NC-mNP-OCL, which repetitively opens and closes when a alternating magnetic field (Hhigh = 11.2 kA·m-1) was switched on and off. For investigation of the micro- and nanostructural changes related to the actuation of the developed nanocomposite, AFM and WAXS experiments were conducted with programmed nanocomposite samples under cyclic heating and cooling between 25 °C and 60 °C. In AFM experiments the change in the distance (D) between representative droplet-like structures related to the OPDL geometry determining domains was used to calculate the reversible change in D. Here Drev = 3.5±1% was found for NC-mNP-OCL which was in good agreement with the results of the magneto-mechanical actuation experiments. Finally, the analysis of azimuthal (radial) WAXS scattering profiles could support the oriented crystallization of the OCL actuation domains at 25 °C. In conclusion, the results of this work successfully demonstrated that shape-memory polymer nanocomposites, containing mNPs as magneto-sensitive multifunctional netpoints in a covalently crosslinked multiphase polymer matrix, exhibit magnetically (remotely) controlled actuations upon repetitive exposure to an alternating magnetic field. Furthermore, the (shape) memory of such a nanocomposite can be erased by exposing it to temperatures above the melting temperature of the geometry forming domains, which allows a reprogramming of the actuator. These findings would be relevant for designing novel reprogrammable remotely controllable soft polymeric actuators. N2 - Polymere Materialien, die nach ihrer Programmierung reversible Formänderungen infolge einer thermischen oder elektrischen Stimulation ausführen, können als Aktuatoren in künstlichen Muskeln, sowie Bauteilen in den Bereichen Photonik, Robotik oder Sensorik dienen. Derartige Aktuatormaterialien können mit Hydrogelen, flüssigkristallinen Elastomeren, elektroaktiven Polymeren oder Formgedächtnispolymeren realisiert werden. Wenn die Anwendungsbedingungen eine direkte Erwärmung oder elektrische Stimulation dieser intelligenten Bauteile nicht zulassen, ist eine kontaktlose Aktivierung erforderlich. Eine ferngesteuerte Aktivierung der Aktuatoren wurde für Komposite aus flüssigkristallinen Elastomeren oder Formgedächtnispolymernetzwerken beschrieben, wenn eine anhaltende externe Spannung während der induktiven Erwärmung in einem magnetischen Wechselfeld angewendet wird. Solche Verbundwerkstoffe können jedoch nicht den Anforderungen von Anwendungen entsprechen, die ferngesteuerte freistehende Bewegungen der Aktuatorkomponenten erfordern. Die vorliegende Arbeit untersucht, ob fernsteuerbare Aktuatoren, deren Geometrie umprogrammierbar ist, über magneto-sensitive Multiphasen-Formgedächtnis-Copolymernetzwerk-Komposite, die Eisenoxid-Nanopartikel als magneto-sensitive, multivalente Netzpunkte enthalten, hergestellt werden können. Eine zentrale Hypothese besteht darin, dass ein magnetisch ferngesteuerter (reversibler bidirektionaler) Formgedächtniseffekt bei derartigen Nanokompositen ohne das Anlegen einer äußeren Spannung/Kraft (freistehend) erreicht werden kann, wenn die erforderliche Orientierung der kristallisierbaren Aktuatordomänen (AD) durch eine innere skelettartige Struktur, die durch eine zweite kristallisierbare Phase ausgebildet wird und die Geometrie der Probe bestimmt, sichergestellt werden kann, während die kovalent integrierten, magneto-sensitiven Eisenoxid-Nanopartikel, die kovalent in die ADs integriert sind, als Sensoren für das kontaktlose Aufheizen im Magnetfeld fungieren. Die Polymermatrix dieser Komposite sollte eine phasen-segregierte Morphologie aufweisen, die überwiegend aus kyrstallierbaren AD besteht, wobei zusätzliche andere, höher schmelzende Kristallite nach der Programmierung der Komposite eine skelettartige, geometriebestimmende Gerüststruktur ausbilden (Geometrie bestimmende Domänen, GD), die auf diese Weise die Orientierung der AD während der Aktuation sicherstellen. Das Arbeitsprinzip für die reversiblen bidirektionalen Bewegungen im Multiphasen-Formgedächtnis-PolymerNetzwerk Komposit beruht auf einer schmelzinduzierte Kontraktion (MIC) der orientierten ADs während der induktiven Erwärmung und deren kristallisationsinduzierten Ausdehnung (CIE) während des Abkühlens. Schließlich sollte die Menge an mehrwertigen magneto-empfindlichen Netzpunkten in solch einem Material so gering wie möglich sein, um eine ausreichende Gesamtelastizität des Nanokomposits zu gewährleisten und gleichzeitig ein vollständiges Schmelzen von ADs und GDs durch induktive Erwärmung ermöglichen, die erforderlich ist für die Reprogrammierung des Aktuators.Zunächst wurden oberflächenmodifizierte Eisenoxid-Nanopartikel synthetisiert und untersucht. Das Co-Präzipitationsverfahren wurde angewandt, um mNP auf der Basis von Magnetit mit einer Größe von 12±3 nm zu synthetisieren. In einem nächsten Schritt wurde eine Ringöffnungspolymerisation (ROP) zur kovalenten Oberflächenmodifizierung solcher mNP mit oligo(ε-Caprolacton) (OCL) oder oligo(ω-Pentadecalacton) (OPDL) über den "grafted from" Ansatz durchgeführt. Eine erfolgreiche Beschichtung von mNP mit OCL und OPDL konnte anhand von zwei Schmelzpeaks bei 52±1 °C (mNP-OCL) und 89±1 °C für mNP-OPDL in DSCExperimenten bestätigt werden. Es wurde weiter untersucht, ob mit einer zweiten oberflächeninitiierten ROP aus mNP-OCL oder mNP-OPDL durch Umsetzung mit ω-Pentadecalacton oder ε-Caprolacton zweischichtig oberflächenmodifizierte mNPs hergestellt werden können. Die Beobachtung von zwei unterschiedlichen Schmelzübergängen in DSCAufheizkurven sowie die mittels Gelpermeationschromatographie und 1H-NMR bestimmte Molekulargewichtszunahme der abgelösten oligomeren Beschichtungen bestätigten eine erfolgreiche Synthese der zweischichtig modifizierten Nanopartikel (mNP-OCL-OPDL und mNPOPDL-OCL). Im Gegensatz dazu zeigten TEM-Aufnahmen eine Reduktion der Dicke der Polymerbeschichtung auf den Nanopartikeln nach der zweiten ROP. Dies deutet darauf hin, dass die angewandte Synthese und Aufreinigung eine weitere Optimierung bedarf. Zur Untersuchung des Einflusses der Verteilung der mNP in einer Polymermatrix auf das magnetische Aufheizverhalten der Komposite wurden sowohl mNP als auch OCL-beschichtete Magnetit-Nanopartikel (mNP-OCL) physikalisch in vernetzte Poly(ε-caprolacton) Netzwerke eingearbeitet. In einem magnetischen Wechselfeld (AMF) mit einer magnetischen Feldstärke von H = 30 kA·m-1 wurden induktive Aufheizexperimente mit beiden Kompositmaterialien cPCL/mNP und cPCL/mNP-OCL durchgeführt. Dabei wurde für cPCL/mNP-OCL eine Massetemperatur von Tbulk = 74±2 °C erreicht, die um fast 20 °C höher lag als der ix Schmelzübergang der PCL-basierten Polymermatrix. Im Gegensatz dazu konnte für das Komposit mit einfachen mNP nur eine Tbulk von 48±2 °C erreicht werden, was für ein vollständiges Schmelzen aller PCL-Kristallite nicht ausreichend ist, wie es für eine kontaklose Schaltung des Formgedächtniseffektes erforderlich wäre. Als nächstes wurden multiphasige Nanokompositnetzwerke hergestellt, die oberflächenmodifizierte mNP als kovalente Netzpunkte enthalten. Diese Komposite wurden aus sternförmigen OCL und OPDL Precursoren, mNP-OCL durch Reaktion mit HDI synthetisiert. Das Gewichtsverhältnis von OPDL und OCL in der Reaktionsmischung betrug 15/85, und die Menge an Eisenoxid in den Nanokompositen entsprach 4 wt%. DSC-Experimente zeigten je zwei gut getrennte Schmelz- und Kristallisationspeaks, die die erforderliche phasen-segregierte Morphologie in den Nanokompositen NC-mNP-OCL bestätigten. TEM-Aufnahmen zeigten ebenfalls eine phasen-separierte Morphologie der Polymermatrix auf der Mikroebene mit tröpfchenförmigen Bereichen, die den in der OCL-Matrix dispergierten OPDL-Domänen zugeordnet werden können. Die Untersuchungen zum induktiven Aufheizverhalten der Nanokomposite bei einer Magnetfeldstärke von Hhigh = 11.2 kA·m-1 ergaben eine Oberflächen-Plateautemperatur von Tsurf = 57±1 °C. Eine effektive Wärmeerzeugungskonstante ̅P kann aus einem kinetischen Monte Carlo-Modellansatz abgeleitet werden, diese ist proportional zur Rate der Wärmeerzeugung pro Volumeneinheit der Probe. Für das untersuchte Nanokomposit betrug ̅P = 1.04±0.01 K·s-1 bei Hhigh, wohingegen bei einer Magnetfeldstärke von Hreset = 30.0 kA·m-1 eine Oberflächentemperatur von Tsurf = 88±1 °C erreicht wurde, bei der alle OPDL Kristallite aufgeschmolzen sind und der ̅P-Wert 1.93±0.02 K·s-1 betrug, welches ein gutes magnetische Aufheizverhalten charakterisiert. Der freistehende magnetisch gesteuerte reversible Formgedächtniseffekt (mrSME) wurde mit Nanokompositstreifen untersucht, der durch Biegen auf einen Winkel von 180° programmiert wurden. Durch Anwendung eines Magnetfeldes von Hhigh = 11.2 kA·m-1 wurden die Komposite auf ca. 60 °C aufgeheizt (erforderlich für das vollständige Aufschmelzen von OCL-Kristallen), und durch Ausschalten des Magnetfeldes (H0 = 0 kA·m-1) auf Umgebungstemperatur abgekühlt. Ein ausgeprägter mrSME konnte für eine durch Biegen programmierten Probe beobachtetet werden, mit Änderungen im Biegewinkel von Δϐrev = 20±3°. In einem mehrzyklischen magnetischen Biegeversuch mit 600 Heiz/Kühlzyklen konnte gezeigt werden, dass sich die Aktuations-Performance mit zunehmender Anzahl an Prüfzyklen nicht verändert, was die Zuverlässigkeit dieses Soft-Aktuators dokumentiert. Der Grad der Auslenkung (Winkeländerung) während der Aktuation sowie die Kinetik der Formänderung während des Erhitzens können durch Variation der magnetischen Feldstärke zwischen Hlow = 10.0 kA·m-1 und Hhigh sowie Einwirkzeit des Magnetfelds eingestellt werden. Nach Anwendung von Hreset = 30.0 kA·m-1 wird die programmierte Geometrie gelöscht und die nimmt wieder ihre ursprünglich gerade Form ein. Die Reprogrammierbarkeit der Nanokomposit-Aktuatoren wurde am Beispiel ein und desselben Probekörpers demonstriert, der nach Programmierung durch Biegen zunächst eine reversible Winkeländerungen bei Aktivierung vollführt, anschließend zu einer Ziehharmonika umprogrammiert wurde, die sich bei induktiver Erwärmung zusammenzieht und bei Kühlung auf Raumtemperatur ausdehnt und abschließend zu einer clipartigen Form umprogrammiert wurde, welche sich bei induktiver Erwärmung im Magnetfeld schließt und beim Kühlen wieder öffnet. In einem nächsten Schritt wurde die grundsätzliche Anwendbarkeit der vorgestellten fernsteuerbaren Formgedächtnispolymer-Aktuatoren am Beispiel des wiederholten Öffnens und Schließens einer aus NC-mNP-OCL hergestellten Multiringvorrichtung demonstriert. Dieser Demonstrator öffnet und schließt sich, wenn ein Magnetfeld von (Hhigh = 11.2 kA·m-1) wiederholend ein- und ausgeschaltet wird. Zur Untersuchung der mikro- und nanostruturellen Veränderungen im Zusammenhang mit der Aktuation der entwickelten Nanokomposite wurden AFM- und WAXS-Experimente an programmierten Nanokompositproben unter zyklischen Erwärmen und Kühlen von 25 °C auf 60 °C durchgeführt. In AFM-Experimenten wurde die Änderung des Abstands (D) zwischen repräsentativen tröpfchenartigen OPDL-Strukturen (GD) verwendet, um die reversible Änderung in D zu berechnen. Hierbei wurde Drev = 3.5±1% für NC-mNP-OCL gefunden, die mit den Ergebnissen der magneto-mechanischen Experimente gut übereinstimmen. Schließlich konnte die Analyse der azimutalen (radialen) WAXS-Streuprofile die orientierte Kristallisation der OCLAktuatordomänen bei abkühlen von 60 °C auf 25 °C zeigen. Zusammenfassend zeigen die Ergebnisse dieser Arbeit, dass Formgedächtnispolymer-Nanokomposite, die mNP als magneto-sensitive multifunktionelle Netzpunkte in einer kovalent vernetzten Multiphasen-Polymermatrix enthalten, eine ferngesteuerte, freistehende Aktuation bei wiederholter Exposition in einem magnetischen Wechselfeld aufweisen. Ferner kann der Formspeicher der Nanokomposite gelöscht werden, indem diese Temperaturen oberhalb der Schmelztemperatur der geometriebestimmenden Domänen (OPDL) ausgesetzt werden, was eine Neuprogrammierung der Aktuatoren in beliebige andere Formen ermöglicht. Die Ergebnisse dieser Arbeit könnten für die Konstruktion neuartiger, umprogrammierbarer und fernsteuerbarer Polymer-Aktuatoren relevant sein. KW - materials science KW - actuator KW - magnetic nanoparticles KW - shape-memory polymer KW - nanocomposite KW - Aktuator KW - magnetische Nanopartikel KW - Formgedächtnispolymer KW - Nanokomposite Y1 - 2018 ER - TY - THES A1 - Tan, Li T1 - Synthesis, assembly and thermo-responsivity of polymer-functionalized magnetic cobalt nanoparticles T1 - Synthese, Assemblierung und Temperatur-Responsivität von Polymer-funktionalisierten magnetischen Cobalt Nanopartikeln N2 - This thesis mainly covers the synthesis, surface modification, magnetic-field-induced assembly and thermo-responsive functionalization of superparamagnetic Co NPs initially stabilized by hydrophobic small molecules oleic acid (OA) and trioctylphosphine oxide (TOPO), as well as the synthesis of both superparamagnetic and ferromagnetic Co NPs by using end-functionalized-polystyrene as stabilizer. Co NPs, due to their excellent magnetic and catalytic properties, have great potential application in various fields, such as ferrofluids, catalysis, and magnetic resonance imaging (MRI). Superparamagnetic Co NPs are especially interesting, since they exhibit zero coercivity. They get magnetized in an external magnetic field and reach their saturation magnetization rapidly, but no magnetic moment remains after removal of the applied magnetic field. Therefore, they do not agglomerate in the body when they are used in biomedical applications. Normally, decomposition of metallic precursors at high temperature is one of the most important methods in preparation of monodisperse magnetic NPs, providing tunability in size and shape. Hydrophobic ligands like OA, TOPO and oleylamine are often used to both control the growth of NPs and protect them from agglomeration. The as-prepared magnetic NPs can be used in biological applications as long as they are transferred into water. Moreover, their supercrystal assemblies have the potential for high density data storage and electronic devices. In addition to small molecules, polymers can also be used as surfactants for the synthesis of ferromagnetic and superparamagnetic NPs by changing the reaction conditions. Therefore, chapter 2 gives an overview on the basic concept of synthesis, surface modification and self-assembly of magnetic nanoparticles. Various examples were used to illustrate the recent work. The hydrophobic Co NPs synthesized with small molecules as surfactants limit their biological applications, which require a hydrophilic or aqueous environment. Surface modification (e.g., ligand exchange) is a general idea for either phase transition or surface-functionalization. Therefore, in chapter 3, a ligand exchange process was conducted to functionalize the surface of Co NPs. PNIPAM is one of the most popular smart polymers and its lower critical solution temperature (LCST) is around 32 °C, with a reversible change in the conformation structure between hydrophobic and hydrophilic. The novel nanocomposites of superparamagnetic Co NPs and thermo-responsive PNIPAM are of great interest. Thus, well-defined superparamagnetic Co NPs were firstly synthesized through the thermolysis of cobalt carbonyl by using OA and TOPO as surfactants. A functional ATRP initiator, containing an amine (as anchoring group) and a 2-bromopropionate group (SI-ATRP initiator), was used to replace the original ligands. This process is rapid and facial for efficient surface functionalization and afterwards the Co NPs can be dispersed into polar solvent DMF without aggregation. FT-IR spectroscopy showed that the TOPO was completely replaced, but a small amount of OA remained on the surface. A TGA measurement allowed the calculation of the grafting density of the initiator as around 3.2 initiator/nm2. Then, the surface-initiated ATRP was conducted for the polymerization of NIPAM on the surface of Co NPs and rendered the nanocomposites water-dispersible. A temperature-dependent dynamic light scattering study showed the aggregation behavior of PNIPAM-coated Co NPs upon heating and this process was proven to be reversible. The combination of superparamagnetic and thermo-responsive properties in these hybrid nanoparticles is promising for future applications e.g. in biomedicine. In chapter 4, the magnetic-field-induced assembly of superparamagnetic cobalt nanoparticles both on solid substrates and at liquid-air interface was investigated. OA- and TOPO-coated Co NPs were synthesized via the thermolysis of cobalt carbonyl and dispersed into either hexane or toluene. The Co NP dispersion was dropped onto substrates (e.g., TEM grid, silicon wafer) and at liquid-air (water-air or ethylene glycol-air) interface. Due to the attractive dipolar interaction, 1-D chains formed in the presence of an external magnetic field. It is known that the concentration and the strength of the magnetic field can affect the assembly behavior of superparamagnetic Co NPs. Therefore, the influence of these two parameters on the morphology of the assemblies was studied. The formed 1-D chains were shorter and flexible at either lower concentration of the Co NP dispersion or lower strength of the external magnetic field due to thermal fluctuation. However, by increasing either the concentration of the NP dispersion or the strength of the applied magnetic field, these chains became longer, thicker and straighter. The reason could be that a high concentration led to a high fraction of short dipolar chains, and their interaction resulted in longer and thicker chains under applied magnetic field. On the other hand, when the magnetic field increased, the induced moments of the magnetic nanoparticles became larger, which dominated over the thermal fluctuation. Thus, the formed short chains connected to each other and grew in length. Thicker chains were also observed through chain-chain interaction. Furthermore, the induced moments of the NPs tended to direct into one direction with increased magnetic field, thus the chains were straighter. In comparison between the assembly on substrates, at water-air interface and at ethylene glycol-air interface, the assembly of Co NPs in hexane dispersion at ethylene glycol-air interface showed the most regular and homogeneous chain structures due to the better spreading of the dispersion on ethylene glycol subphase than on water subphase and substrates. The magnetic-field-induced assembly of superparamagnetic nanoparticles could provide a powerful approach for applications in data storage and electronic devices. Chapter 5 presented the synthesis of superparamagnetic and ferromagnetic cobalt nanoparticles through a dual-stage thermolysis of cobalt carbonyl (Co2(CO)8) by using polystyrene as surfactant. The amine end-functionalized polystyrene surfactants with different molecular weight were prepared via atom transfer radical polymerization technique. The molecular weight determination of polystyrene was conducted by gel permeation chromatography (GPC) and matrix-assisted laser desorption/ionization time-of-flight (MALDI-ToF) mass spectrometry techniques. The results showed that, when the molecular weight distribution is low (Mw/Mn < 1.2), the measurement by GPC and MALDI-ToF MS provided nearly similar results. For example, the molecular weight of 10600 Da was obtained by MALDI-ToF MS, while GPC gave 10500 g/mol (Mw/Mn = 1.17). However, if the polymer is poly distributed, MALDI-ToF MS cannot provide an accurate value. This was exemplified for a polymer with a molecular weight of 3130 Da measured by MALDI-TOF MS, while GPC showed 2300 g/mol (Mw/Mn = 1.38). The size, size distribution and magnetic properties of the hybrid particles were different by changing either the molecular weight or concentration of the polymer surfactants. The analysis from TEM characterization showed that the size of cobalt nanoparticles stabilized with polystyrene of lower molecular weight (Mn = 2300 g/mol) varied from 12–22 nm, while the size with middle (Mn = 4500 g/mol) and higher molecular weight (Mn = 10500 g/mol) of polystyrene-coated cobalt nanoparticles showed little change. Magnetic measurements exhibited that the small cobalt particles (12 nm) were superparamagnetic, while larger particles (21 nm) were ferromagnetic and assembled into 1-D chains. The grafting density calculated from thermogravimetric analysis showed that a higher grafting density of polystyrene was obtained with lower molecular weight (Mn = 2300 g/mol) than those with higher molecular weight (Mn = 10500 g/mol). Due to the larger steric hindrance, polystyrene with higher molecular weight cannot form a dense shell on the surface of the nanoparticles, which resulted in a lower grafting density. Wide angle X-ray scattering measurements revealed the epsilon cobalt crystalline phases of both superparamagnetic Co NPs coated with polystyrene (Mn = 2300 g/mol) and ferromagnetic Co NPs coated with polystyrene (Mn = 10500 g/mol). Furthermore, a stability study showed that PS-Co NPs prepared with higher polymer concentration and polymer molecular weight exhibited a better stability. N2 - Im Rahmen dieser Arbeit wurden superparamagnetische Cobalt Nanopartikel (NP) synthetisiert, die Selbstassemblierung im Magnetfeld untersucht und die ursprünglichen Liganden Ölsäure (Englisch oleic acid, OA) und Trioctylphosphanoxid (TOPO) ersetzt, um eine Funktionalisierung der Nanopartikel mit einem Temperatur-responsiven Polymer zu erreichen. Außerdem wurden superparamagnetische und ferromagnetische Co NP mit Polystyrol als Stabilisator synthetisiert. Co NP haben aufgrund ihrer herausragenden magnetischen und katalytischen Eigenschaften viele potentielle Anwendungen beispielsweise als Ferrofluide, in der Katalyse und der Magnetresonanztomografie (Englisch magnetic resonance imaging, MRI). Besonders interessant sind dabei superparamagnetische Co NP, die in einem äußeren Magnetfeld magnetisiert werden, aber nach Entfernen des angelegten Magnetfelds keine Magnetisierung mehr aufweisen. Bei biomedizinischen Anwendungen aggregieren sie daher nicht im Körper. Hydrophobe Co NP, die von kleinen Molekülen stabilisiert werden, eignen sich nicht für biologische Anwendungen, für die ein hydrophiles oder wässriges Medium vonnöten ist. Kapitel 3 beschreibt einen Ligandenaustausch zur Funktionalisierung von Co Nanopartikeln und das Herstellen neuer Nanokomposite aus superparamagnetischen Co NP und Temperatur-responsivem PNIPAM. Zunächst wurden wohldefinierte superparamagnetische Co NP mit OA und TOPO als Stabilisatoren durch die Thermolyse von Cobalt Carbonyl synthetisiert. Die ursprünglichen Liganden wurden dann durch einen funktionalen Liganden mit einer Amingruppe (zum Binden an die Oberfläche) und einer 2 Brompropionat-Gruppe (Polymerisationsinitiator) ersetzt. Nach diesem schnellen und einfachen Prozess der Oberflächenfunktionalisierung können die Nanopartikel ohne Aggregation in dem polaren Lösungsmittel DMF dispergiert werden. Nach thermogravimetrischen Messungen konnte die Dichte der Initiatoren mit ungefähr 3,2 Initiatoren / nm2 berechnet werden. Anschließend wurde Oberflächen-initiierte ATRP zur Polymerisation von NIPAM durchgeführt. Temperatur-abhängige Messungen der dynamischen Lichtstreuung der nun in Wasser dispergierbaren Nanokomposite zeigte das reversible Aggregationsverhalten nach Erhitzen über 32 °C. Kapitel 4 behandelt die Untersuchung der Assemblierung von superparamagnetischen OA- und TOPO-stabilisierten Co NP im äußeren Magnetfeld sowohl auf festen Oberflächen als auch der Flüssigkeit-Luft Grenzfläche. Durch die anziehende dipolare Wechselwirkung bildeten sich im äußeren Magnetfeld 1-D Ketten. Der Einfluss der Konzentration der Dispersion und der Stärke des Magnetfelds auf die Morphologie der assemblierten Strukturen wurde untersucht. Bei niedrigerer Konzentration der Dispersion und geringerer Magnetfeldstärke bildeten sich kurze und flexible Ketten. Bei höherer Konzentration oder höherer Magnetfeldstärke wurden die Ketten länger, breiter und gerader. Andererseits sind die induzierten magnetischen Momente bei erhöhter Magnetfeldstärke größer und dominieren über die thermische Fluktuation. Daher verbinden sich die kurzen Ketten zu längeren, und dickere Ketten entstehen durch Interaktion benachbarter Ketten. Außerdem zeigen die induzierten Momente der NP verstärkt in die gleiche Richtung je größer das äußere Magnetfeld ist, weshalb die Ketten gerader werden. Im Vergleich der Assemblierung auf Substraten (TEM-Grids, Siliciumwafer), an der Wasser-Luft und Ethylenglycol-Luft Grenzfläche, zeigte die Assemblierung von Co NP aus Hexan-Dispersion an der Ethylenglycol-Luft Grenzfläche die geordnetsten und homogensten Strukturen. Kapitel 5 präsentierte die Synthese von superparamagnetischen und ferromagnetischen Cobalt Nanopartikeln durch die zwei-stufige Thermolyse von Cobalt Carbonyl (Co2(CO)8) mit Polystyrol als Stabilisator. Polystyrol Polymere mit Amin-Endgruppen wurden durch ATRP-Technik mit unterschiedlichen Molekulargewichten hergestellt. Die Größe, Größenverteilung und magnetischen Eigenschaften der hybriden Partikel haben sich mit dem Molekulargewicht und der Konzentration der Polymer-Stabilisatoren unterschieden. Eine Analyse mit Transmissionselektronenmikroskopie zeigte, dass die Größe der Co NP zwischen 12–22 nm variierte, wenn sie durch Polystyrol geringen Molekulargewichts (Mn = 2300 g/mol) stabilisiert wurden, während sich die Größe der Partikel mit Polystyrol mittleren (Mn = 4500 g/mol) und höheren (Mn = 10500 g/mol) Molekulargewichts kaum unterschied. Messungen der magnetischen Eigenschaften zeigten, dass die kleinen Cobalt Partikel (12 nm) superparamagnetisch waren, während größere Partikel (21 nm) ferromagnetisch waren und zu 1-D Ketten assemblierten. Die Dichte der Polymere auf der Oberfläche wurde nach einer thermogravimetrischen Analyse berechnet. Mit kleinem Molekulargewicht (Mn = 2300 g/mol) wurde eine höhere Dichte erreicht als mit hohem Molekulargewicht (Mn = 10500 g/mol). Durch eine stärker ausgeprägte sterische Hinderung kann ein Polymer hohen Molekulargewichts keine dichte Hülle um die Nanopartikel bilden. Das Vorliegen einer epsilon kristallinen Phase wurde durch Weitwinkel-Röntgenstreuung sowohl für superparamagnetische Co NP (mit PS Mn = 2300 g/mol) als auch ferromagnetische Co NP (mit PS Mn = 10500 g/mol) bestimmt. KW - magnetic nanoparticles KW - assembly KW - polymer KW - cobalt nanoparticles KW - magnetische Nanopartikel KW - Assemblierung KW - Polymer KW - Cobalt Nanopartikeln Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-418153 ER - TY - THES A1 - Raju, Rajarshi Roy T1 - ‘Smart’ Janus emulsions BT - preparation, characterization, and application as a template for aerogel preparation N2 - Emulsions constitute one of the most prominent and continuously evolving research areas in Colloid Chemistry, which involves the preparation of mixtures or dispersions of immiscible components in a continuous medium. Besides conventional oil-in-water or water-in-oil emulsions, other emulsions of complex droplet morphologies have recently attracted significant research interests. Especially Janus emulsions, in which each droplet is comprised of two distinct sub-regions, have shown versatile potential applications. One of their advantages is the possibility of compartmentalization, which enables to play with two different chemistries in a single droplet. Though microfluidic methods are conventionally used to prepare Janus emulsions, their industrial applications are largely hindered by low throughput and extensive instrumentations. Recently, it has been discovered that simply one-pot moderate/high energy emulsification is also capable of developing Janus morphology, although their preparation and stabilization remain rather substantially challenging. This cumulative doctoral thesis focuses on the preparation and characterization of ‘smart’ Janus emulsions, i.e. Janus emulsions with special stimuli-responsive features. One-step moderate/high energy emulsification of olive and silicone oil in an aqueous medium was carried out. Special consideration was devoted to the interfacial tensions among the components to maintain the criteria of forming characteristic droplet architectures, in addition to avoiding multiple emulsion destabilization phenomena like imminent phase separation or even separated droplet formation. A series of investigations were conducted related to the formation of complexes of charged macromolecules and role of them as stabilizers to achieve stable Janus emulsions for a realistic timeframe (more than 3 months). The correlation between the size of the stabilizer particles and the droplet size of emulsion was established. Furthermore, it was observed that Janus emulsion gels with interesting rheological properties can be fabricated in the presence of suitable polyelectrolyte complexes. Janus emulsions that could be influenced by pH, temperature or magnetic field were successfully produced in presence of characteristic stimuli-responsive stabilizers. Afterwards, the effect of these changes was studied by different characterization techniques. The size and morphology could be tuned easily by changing the pH. The incorporation of iron oxide magnetic nanoparticles (synthesized separately by a co-precipitation method) to one component of the Janus emulsion was carried out so that the movement and orientation of the complex droplets in aqueous media could be controlled by an external magnetic field. Additionally, temperature-triggered instantaneous reversible breakdown of Janus droplets was also accomplished. The responses of the Janus droplets by the stimuli were well-documented and explained. Another goal of the present contribution was to exploit this special morphological feature of emulsions as a template for producing porous materials. This was demonstrated by the preparation of ultralight magnetic responsive aerogels, utilizing Janus emulsion gels. The produced aerogels also showed the capacity to separate toxic dye from water. To the best of our knowledge, this is the first example of investigation towards batch scale production of Janus emulsion with such special stimuli-responsive properties by a simple bulk emulsification method. N2 - Emulsionen bilden eines der bekanntesten und sich ständig weiterentwickelnden Forschungsgebiete in der Kolloidchemie. Dabei werden Gemische oder Dispersionen nicht miteinander mischbarer Komponenten in einem kontinuierlichen Medium hergestellt. Neben den herkömmlichen Öl-in-Wasser- oder Wasser-in-Öl-Emulsionen gewinnen in letzter Zeit andere Emulsionen mit komplexeren Tröpfchenmorphologien zunehmend an Forschungsinteresse. Hier sind vor allem Janus-Emulsionen, zu nennen, die aus zwei nicht mischbaren Ölkomponenten, dispergiert in einem wässerigen Medium, bestehen. Da jedes Tröpfchen aus zwei unterschiedlichen Kompartimenten gebildet wird, besteht hier die Möglichkeit gezielt mit der Chemie der Tröpschenbestandteile zu spielen. Obwohl mikrofluidische Verfahren üblicherweise zur Herstellung von Janus-Emulsionen verwendet werden, finden diese nur begrenzt Anwendung in der Industrie aufgrund des geringen Durchsatzes. Kürzlich wurde entdeckt, dass mit einer einfachen Eintopf-Emulgierung bei mittlerer/hoher Energie auch die Janus-Morphologie erzeugt werden kann. Die Herstellung und Stabilisierung der Emulsionen unter Anwendung dieser Methode bleibt jedoch eine große Herausforderung. Der Fokus dieser kumulativen Doktorarbeit konzentriert sich auf die Herstellung und Charakterisierung von „smarten“ Janus-Emulsionen. Diese sind zum Beispiel Janus-Emulsionen, die auf spezielle Reize/Stimuli reagieren. Eine einstufige Emulgierung mit mittlerer/hoher Energie von Oliven- und Silikonöl wurde im wässrigen Medium durchgeführt. Besonderes Augenmerk wurde auf die Grenzflächenspannungen zwischen den Komponenten gelegt, um die Kriterien für die Bildung charakteristischer Tröpfchenarchitekturen beizubehalten und um mehrfache Emulsionsdestabilisierungsphänomene wie eine Phasentrennung oder sogar eine getrennte Tröpfchenbildung zu vermeiden. Eine Reihe von Untersuchungen bezog sich auf die Bildung von Komplexen geladener Makromoleküle und deren Rolle als Stabilisatoren, um stabile Janus-Emulsionen über einen realistischen Zeitraum (länger als 3 Monate) zu erzielen. Dabei wurde eine Korrelation zwischen der Größe der Komplexe und der Tröpfchengröße festgestellt. Weiterhin konnte gezeigt werden, dass Janus-Emulsionsgele mit interessanten rheologischen Eigenschaften in Gegenwart geeigneter Polyelektrolytkomplexe hergestellt werden können. Temperatur und pH-Wert erwiesen sich als Stimulatoren für ausgewählte polymerstabilisierte Janus Emulsionen. Anschließend wurde die Auswirkung dieser Stimuli durch verschiedene Charakterisierungsmethoden untersucht. Dabei konnten die Größe und die Morphologie durch die Änderung des pH-Wertes eingestellt werden. Durch die Einfügung von magnetischen Eisenoxid-Nanopartikeln in eine der Komponenten der Janus-Emulsion konnten die Orientierung und die Bewegung der Tröpfchen durch ein externes Magnetfeld gesteuert werden. Zusätzlich konnte ein temperaturabhängiger sofortiger reversibler Zusammenfall von Janus-Tröpfchen gezeigt werden.. Ein weiteres Ziel des vorliegenden Arbeit war es, dieses spezielle morphologische Merkmal von Emulsionen als Vorlage für die Herstellung poröser Materialien zu nutzen. Dies wurde durch die Herstellung von ultraleichten magnetischen Aerogelen unter Verwendung von Janus-Emulsionsgelen demonstriert. Die hergestellten Aerogele zeigten die Fähigkeit toxischen Farbstoff von Wasser abzutrennen. Nach unserem besten Wissen ist dies das erste Beispiel für eine Untersuchung zur Herstellung von Janus-Emulsionen im Chargenmaßstab mit solchen speziellen Reiz/Stimuli responsiven Eigenschaften durch ein einfaches Emulgierungsverfahren. KW - janus emulsion KW - emulsion KW - magnetic nanoparticles KW - aerogel KW - stimul-responsive KW - stimul-responsive emulsion KW - pH-responsive KW - temperature-responsive Y1 - 2021 ER - TY - GEN A1 - Jeličić, Aleksandra A1 - Friedrich, Alwin A1 - Jeremić, Katarina A1 - Siekmeyer, Gerd A1 - Taubert, Andreas T1 - Polymer hydrogel/polybutadiene/iron oxide nanoparticle hybrid actuators for the characterization of NiTi implants N2 - One of the main issues with the use of nickel titanium alloy (NiTi) implants in cardiovascular implants (stents) is that these devices must be of very high quality in order to avoid subsequent operations due to failing stents. For small stents with diameters below ca. 2 mm, however, stent characterization is not straightforward. One of the main problems is that there are virtually no methods to characterize the interior of the NiTi tubes used for fabrication of these tiny stents. The current paper reports on a robust hybrid actuator for the characterization of NiTi tubes prior to stent fabrication. The method is based on a polymer/hydrogel/magnetic nanoparticle hybrid material and allows for the determination of the inner diameter at virtually all places in the raw NiTi tubes. Knowledge of the inner structure of the raw NiTi tubes is crucial to avoid regions that are not hollow or regions that are likely to fail due to defects inside the raw tube. The actuator enables close contact of a magnetic polymer film with the inner NiTi tube surface. The magnetic signal can be detected from outside and be used for a direct mapping of the tube interior. As a result, it is possible to detect critical regions prior to expensive and slow stent fabrication processes. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - paper 161 KW - NiTi KW - inner surface KW - hydrogel KW - polybutadiene KW - magnetic nanoparticles Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-48589 ER -