TY - JOUR A1 - Enzenberg, Anne A1 - Laschewsky, Andre A1 - Boeffel, Christine A1 - Wischerhoff, Erik T1 - Influence of the Near Molecular Vicinity on the Temperature Regulated Fluorescence Response of Poly(N-vinylcaprolactam) JF - Polymers N2 - A series of new fluorescent dye bearing monomers, including glycomonomers, based on maleamide and maleic esteramide was synthesized. The dye monomers were incorporated by radical copolymerization into thermo-responsive poly(N‑vinyl-caprolactam) that displays a lower critical solution temperature (LCST) in aqueous solution. The effects of the local molecular environment on the polymers’ luminescence, in particular on the fluorescence intensity and the extent of solvatochromism, were investigated below as well as above the phase transition. By attaching substituents of varying size and polarity in the close vicinity of the fluorophore, and by varying the spacer groups connecting the dyes to the polymer backbone, we explored the underlying structure–property relationships, in order to establish rules for successful sensor designs, e.g., for molecular thermometers. Most importantly, spacer groups of sufficient length separating the fluorophore from the polymer backbone proved to be crucial for obtaining pronounced temperature regulated fluorescence responses. View Full-Text KW - thermo-responsive polymers KW - poly(N-vinylcaprolactam) KW - lower critical solution temperature KW - fluorescent dyemonomers KW - naphthalimide KW - solvatochromism KW - polymeric sensors KW - molecular thermometers Y1 - 2016 U6 - https://doi.org/10.3390/polym8040109 SN - 2073-4360 VL - 8 PB - MDPI CY - Basel ER - TY - GEN A1 - Enzenberg, Anne A1 - Laschewsky, André A1 - Boeffel, Christine A1 - Wischerhoff, Erik T1 - Influence of the near molecular vicinity on the temperature regulated fluorescence response of poly(N-vinylcaprolactam) N2 - A series of new fluorescent dye bearing monomers, including glycomonomers, based on maleamide and maleic esteramide was synthesized. The dye monomers were incorporated by radical copolymerization into thermo-responsive poly(N-vinyl-caprolactam) that displays a lower critical solution temperature (LCST) in aqueous solution. The effects of the local molecular environment on the polymers' luminescence, in particular on the fluorescence intensity and the extent of solvatochromism, were investigated below as well as above the phase transition. By attaching substituents of varying size and polarity in the close vicinity of the fluorophore, and by varying the spacer groups connecting the dyes to the polymer backbone, we explored the underlying structure-property relationships, in order to establish rules for successful sensor designs, e.g., for molecular thermometers. Most importantly, spacer groups of sufficient length separating the fluorophore from the polymer backbone proved to be crucial for obtaining pronounced temperature regulated fluorescence responses. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 363 KW - thermo-responsive polymers KW - poly(N-vinylcaprolactam) KW - lower critical solution temperature KW - fluorescent dyemonomers KW - naphthalimide KW - solvatochromism KW - polymeric sensors KW - molecular thermometers Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-400634 ER -