TY - THES A1 - Lama, Sandy M. G. T1 - Functionalization of Porous Carbon Materials with Heteroatoms and Application as Supports in Industrial Heterogeneous Catalysis T1 - Funktionalisierung von porösen Kohlenstoffmaterialien mit Heteroatomen und Anwendung als Träger in der industriellen heterogenen Katalyse N2 - Due to a challenging population growth and environmental changes, a need for new routes to provide required chemicals for human necessities arises. An effective solution discussed in this thesis is industrial heterogeneous catalysis. The development of an advanced industrial heterogeneous catalyst is investigated herein by considering porous carbon nano-material as supports and modifying their surface chemistry structure with heteroatoms. Such modifications showed a significant influence on the performance of the catalyst and provided a deeper insight regarding the interaction between the surface structure of the catalyst and the surrounding phase. This thesis contributes to the few present studies about heteroatoms effect on the catalyst performance and emphasizes on the importance of understanding surface structure functionalization in a catalyst in different phases (liquid and gaseous) and for different reactions (hydrogenolysis, oxidation, and hydrogenation/ polymerization). Herein, the heteroatoms utilized for the modifications are hydrogen (H), oxygen (O), and nitrogen (N). The heteroatoms effect on the metal particle size, on the polarity of the support/ the catalyst, on the catalytic performance (activity, selectivity, and stability), and on the interaction with the surrounding phase has been explored. First hierarchical porous carbon nanomaterials functionalized with heteroatoms (N) is synthesized and applied as supports for nickel nanoparticles for hydrogenolysis process of kraft lignin in liquid phase. This reaction has been performed in batch and flow reactors for three different catalysts, two of comparable hierarchical porosity, yet one is modified with N and the other is not, and a third is a prepared catalyst from a commercial carbon support. The reaction production and analyses show that the catalysts with hierarchical porosity perform catalytically much better than in presence of a commercial carbon support with lower surface area. Moreover, the modification with N-heteroatoms enhanced the catalytic performance because the heteroatom modified porous carbon material with nickel nanoparticles catalyst (Ni-NDC) performed highest among the other catalysts. In the flow reactor, Ni-NDC selectively degraded the ether bonds (β-O-4) in kraft lignin with an activity of 2.2 x10^-4 mg lignin mg Ni-1 s-1 for 50 h at 350°C and 3.5 mL min-1 flow, providing ~99 % conversion to shorter chained chemicals (mainly guaiacol derivatives). Then, the functionalization of carbon surface was further studied in selective oxidation of glucose to gluconic acid using < 1 wt. % of gold (Au) deposited on the previously-mentioned synthesized carbon (C) supports with different functionalities (Au-CGlucose, Au-CGlucose-H, Au-CGlucose-O, Au-CGlucoseamine). Except for Au-CGlucose-O, the other catalysts achieved full glucose conversion within 40-120 min and 100% selectivity towards gluconic acid with a maximum activity of 1.5 molGlucose molAu-1 s-1 in an aqueous phase at 45 °C and pH 9. Each heteroatom influenced the polarity of the carbon differently, affecting by that the deposition of Au on the support and thus the activity of the catalyst and its selectivity. The heteroatom effect was further investigated in a gas phase. The Fischer-Tropsch reaction was applied to convert synthetic gas (CO and H2) to short olefins and paraffins using surface-functionalized carbon nanotubes (CNTs) with heteroatoms as supports for ion (Fe) deposition in presence and absence of promoters (Na and S). The results showed the promoted Fe-CNT doped with nitrogen catalyst to be stable up to 180 h and selective to the formation of olefins (~ 47 %) and paraffins (~6 %) with a conversion of CO ~ 92 % at a maximum activity of 94 *10^-5 mol CO g Fe-1 s-1. The more information given regarding this topic can open wide range of applications not only in catalysis, but in other approaches as well. In conclusion, incorporation of heteroatoms can be the next approach for an advanced industrial heterogeneous catalyst, but also for other applications (e.g. electrocatalysis, gas adsorption, or supercapacitors). N2 - Herausforderungen wie Bevölkerungszuwachs und Umweltveränderungen erfordern neue Wege, chemische Substanzen zu erzeugen, um menschliche Anforderungen zu befriedigen. Eine mögliche effektive Lösung dafür, welche in dieser Arbeit diskutiert wird ist die industrielle heterogene Katalyse. Es werden unter dem Einsatz poröser Kohlenstoffträger neue industrielle Katalysatoren untersucht und entwickelt wobei die Oberflächenstruktur dieser Trägermaterialien mit Heteroatomen modifiziert wird. Diese Modifikationen zeigten einen signifikanten Einfluss auf die Eigenschaften der Katalysatoren und erlaubten Rückschlüsse hinsichtlich der Interaktion zwischen Katalysatoroberfläche und umgebender Phase. Die vorliegende Arbeit trägt zu einigen wenigen existierenden Studien bei die sich mit den Einflüssen solcher Heteroatome auf Katalysatoren beschäftigen. Es wird versucht, die Wichtigkeit dieser Oberflächeneigenschaften in Reaktionen (Hydrogenolyse, Oxidation, Hydrierung/ Polymerisation) in verschiedenen Phasen (flüssig oder gasförmig) zu verstehen. Die für die Modifikationen eingesetzten Heteroatome sind Wasserstoff (H), Sauerstoff (O) und Stickstoff (N). Ihr Effekt auf die Größe der Metallpartikel, die Polarität der Träger bzw. Katalysatoren, die eigentlichen katalytischen Eigenschaften und die Interaktion mit der umgebenden Phase wurde untersucht. Zuerst wurden hierarchisch poröse Kohlenstoffmaterialien hergestellt, die mit Stickstoff als Heteroatome funktionalisiert wurden. Diese wurden als Trägermaterialien für Nickel-Nanopartikel in der Hydrogenolyse von Kraft Lignin in flüssiger Phase eingesetzt. Diese Reaktion wurde mit drei unterschiedlichen Katalysatoren in Batch- und Flussreaktoren durchgeführt. Zwei der Katalysatoren hatten vergleichbare hierarchische Porosität. Einer davon war mit Heteroatomen funktionalisiert, einer dagegen nicht. Ein dritter Katalysator wurde mit einem kommerziell erhältlichen Kohlenstoffmaterial hergestellt. Die Reaktion zeigte, dass die Katalysatoren mit hierarchischer Porosität deutlich bessere Eigenschaften zeigen als das kommerzielle Trägermaterial mit geringerer Oberfläche. Darüber hinaus zeigte sich, dass die Modifizierung mit Stickstoffatomen die katalytischen Eigenschaften verbessert, da das modifizierte Kohlenstoffmaterial mit den Nickelpartikeln (Ni-NDC) die besten Ergebnisse aller untersuchten Katalysatoren zeigte. Im Durchflussreaktor wurden von Ni-NDC die Etherbindungen des Kraft Lignins (β-O-4) selektiv mit einer Aktivität von 2.2 x10^-4 mg lignin mg Ni-1 s-1 für 50 h bei 99% Umsatz zu kurzkettigeren Strukturen (hauptsächlich Guajakol-Derivat) gespalten. Außerdem wurde der Einfluss der Funktionalisierung der Kohlenstoffoberfläche in der selektiven Oxidation von Glucose zu Gluconsäure mit 1 Gew.% Gold (Au) auf den vorher angesprochenen Kohlenstoffträgermaterialien mit unterschiedlichen Oberflächenfunktionalitäten (Au-CGlucose, Au-CGlucose-H, Au-CGlucose-O, Au-CGlucoseamine) untersucht. Mit Ausnahme von Au-CGlucose-O erreichten alle Katalysatoren innerhalb von 40-120 min 100% Glucose Umsatz bei 100%iger Selektivität zu Gluconsäure und einer maximalen katalytischen Aktivität von 1.5 molGlucose molAu-1 s-1 in wässriger Phase bei 45°C und pH 9. Die unterschiedlichen Heteroatome wirkten sich unterschiedlich auf die Polarität der Kohlenstoffe und damit auch auf die Abscheidung der Goldpartikel auf die Trägermaterialien und die Katalysatoraktivität und -selektivität aus. Der Einfluss der Heteroatome wurde außerdem in einer Gasphasenreaktion untersucht. Die Fischer-Tropsch Reaktion kam zum Einsatz um Synthesegas (CO und H2) mit Hilfe von Katalysatoren bestehend aus Eisen (Fe) auf Heteroatomfunktionalisierten Kohlenstoffnanoröhrchen (engl. Carbon nanotubes, CNTs) in Gegenwart und Abwesenheit von Promotoren (Na und S) zu kurzkettigen Olefinen und Paraffinen umzuwandeln. Die Ergebnisse zeigten dass die Fe-CNT Katalysatoren mit Promotoren und stickstoffdotierten Trägern bis zu 180 h stabil waren und Olefine (~ 47 %) sowie Paraffine (~6 %) mit guten Selektivitäten bei einem CO Umsatz von 92% und einer maximalen Aktivität von 94 *10^-5 mol CO gFe-1 s-1 hergestellt werden konnten. Je mehr Informationen zu diesem Thema zur Verfügung gestellt werden, kann dies zu einer großen Bandbreite von Anwendungen nicht nur in der Katalyse, sondern auch in anderen Ansätzen beitragen. Zusammenfassend kann der Einbau von Heteroatomen der nächste Ansatz für einen fortgeschrittenen industriellen heterogenen Katalysator sein, aber auch für andere Anwendungen (z.B. Elektrokatalyse, Gasadsorption oder Superkondensatoren). KW - catalysis KW - carbon material KW - carbon supports KW - glucose oxidation KW - Kraft lignin hydrogenolysis KW - Fischer-Tropsch Synthesis KW - Syngas Hydrogenation KW - gold-carbon catalysts KW - nickel-carbon catalysts KW - iron-carbon nanotube catalysts KW - hierarchical porosity KW - heteroatom modification KW - catalyst functionalization KW - Katalyse KW - Kohlenstoffmaterial KW - Kohlenstoffträger KW - Glukoseoxidation KW - Kraftlignin KW - Hydrogenolyse KW - Fischer-Tropsch-Synthese KW - Syngashydrierung KW - Gold-Kohlenstoff-Katalysatoren KW - Nickel-Kohlenstoff-Katalysatoren KW - Eisen-Kohlenstoff-Nanoröhrchen-Katalysatoren KW - hierarchische Porosität KW - Heteroatom-Modifikation KW - Funktionalisierung von Katalysatoren Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-415797 ER -