TY - JOUR A1 - Schwarze, Thomas A1 - Müller, Holger A1 - Ast, Sandra A1 - Steinbrück, Dörte A1 - Eidner, Sascha A1 - Geißler, Felix A1 - Kumke, Michael Uwe A1 - Holdt, Hans-Jürgen ED - Kumke, Michael Uwe T1 - Fluorescence lifetime-based sensing of sodium by an optode JF - Chemical Communications N2 - We report a 1,2,3-triazol fluoroionophore for detecting Na+ that shows in vitro enhancement in the Na+-induced fluorescence intensity and decay time. The Na+-selective molecule 1 was incorporated into a hydrogel as a part of a fiber optical sensor. This sensor allows the direct determination of Na+ in the range of 1–10 mM by measuring reversible fluorescence decay time changes. KW - ion optodes KW - sensors KW - indicators KW - chromoionophore KW - ionophore KW - membrane KW - switches KW - systems KW - samples KW - green Y1 - 2014 SN - 0022-4936 SN - 0009-241X SP - 14167 EP - 14170 PB - The Royal Society Chemistry CY - Cambridge ER - TY - GEN A1 - Schwarze, Thomas A1 - Müller, Holger A1 - Ast, Sandra A1 - Steinbrück, Dörte A1 - Eidner, Sascha A1 - Geißler, Felix A1 - Kumke, Michael Uwe A1 - Holdt, Hans-Jürgen T1 - Fluorescence lifetime-based sensing of sodium by an optode N2 - We report a 1,2,3-triazol fluoroionophore for detecting Na+ that shows in vitro enhancement in the Na+-induced fluorescence intensity and decay time. The Na+-selective molecule 1 was incorporated into a hydrogel as a part of a fiber optical sensor. This sensor allows the direct determination of Na+ in the range of 1–10 mM by measuring reversible fluorescence decay time changes. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 182 KW - ion optodes KW - sensors KW - indicators KW - chromoionophore KW - ionophore KW - membrane KW - switches KW - systems KW - samples KW - green Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-76785 SP - 14167 EP - 14170 PB - The Royal Society of Chemistry CY - Cambridge ER - TY - GEN A1 - Niedl, Robert Raimund A1 - Berenstein, Igal A1 - Beta, Carsten T1 - How imperfect mixing and differential diffusion accelerate the rate of nonlinear reactions in microfluidic channels N2 - In this paper, we show experimentally that inside a microfluidic device, where the reactants are segregated, the reaction rate of an autocatalytic clock reaction is accelerated in comparison to the case where all the reactants are well mixed. We also find that, when mixing is enhanced inside the microfluidic device by introducing obstacles into the flow, the clock reaction becomes slower in comparison to the device where mixing is less efficient. Based on numerical simulations, we show that this effect can be explained by the interplay of nonlinear reaction kinetics (cubic autocatalysis) and differential diffusion, where the autocatalytic species diffuses slower than the substrate. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 253 KW - arsenious acid KW - fronts KW - paper KW - poly(dimethylsiloxane) KW - scale KW - systems Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-95810 SP - 6451 EP - 6457 ER - TY - JOUR A1 - Niedl, Robert Raimund A1 - Berenstein, Igal A1 - Beta, Carsten T1 - How imperfect mixing and differential diffusion accelerate the rate of nonlinear reactions in microfluidic channels JF - Physical chemistry, chemical physics : PCCP ; a journal of European Chemical Societies N2 - In this paper, we show experimentally that inside a microfluidic device, where the reactants are segregated, the reaction rate of an autocatalytic clock reaction is accelerated in comparison to the case where all the reactants are well mixed. We also find that, when mixing is enhanced inside the microfluidic device by introducing obstacles into the flow, the clock reaction becomes slower in comparison to the device where mixing is less efficient. Based on numerical simulations, we show that this effect can be explained by the interplay of nonlinear reaction kinetics (cubic autocatalysis) and differential diffusion, where the autocatalytic species diffuses slower than the substrate. KW - arsenious acid KW - systems KW - poly(dimethylsiloxane) KW - fronts KW - scale KW - paper Y1 - 2016 U6 - https://doi.org/10.1039/c6cp00224b SN - 1463-9076 SN - 1463-9084 VL - 18 SP - 6451 EP - 6457 PB - Royal Society of Chemistry CY - Cambridge ER -