TY - THES A1 - Halbrügge, Lena T1 - Von der Curricularen Innovation zur Wissenschaftskommunikation T1 - From curriculum innovation to science communication BT - Explorative Entwicklung und Evaluation einer Wissenschaftskommunikationsstrategie für naturwissenschaftliche Forschungsverbünde BT - exploratory development and evaluation of a strategy for science communication in scientific research associations N2 - Im Rahmen einer explorativen Entwicklung wurde in der vorliegenden Studie ein Konzept zur Wissenschaftskommunikation für ein Graduiertenkolleg, in dem an photochemischen Prozessen geforscht wird, erstellt und anschließend evaluiert. Der Grund dafür ist die immer stärker wachsende Forderung nach Wissenschaftskommunikation seitens der Politik. Es wird darüber hinaus gefordert, dass die Kommunikation der eigenen Forschung in Zukunft integrativer Bestandteil des wissenschaftlichen Arbeitens wird. Um junge Wissenschaftler bereits frühzeitig auf diese Aufgabe vorzubereiten, wird Wissenschaftskommunikation auch in Forschungsverbünden realisiert. Aus diesem Grund wurde in einer Vorstudie untersucht, welche Anforderungen an ein Konzept zur Wissenschaftskommunikation im Rahmen eines Forschungsverbundes gestellt werden, indem die Einstellung der Doktoranden zur Wissenschaftskommunikation sowie ihre Kommunikationsfähigkeiten anhand eines geschlossenen Fragebogens evaluiert wurden. Darüber hinaus wurden aus den Daten Wissenschaftskommunikationstypen abgeleitet. Auf Grundlage der Ergebnisse wurden unterschiedliche Wissenschaftskommunikationsmaßnahmen entwickelt, die sich in der Konzeption, den Rezipienten, sowie der Form der Kommunikation und den Inhalten unterscheiden. Im Rahmen dieser Entwicklung wurde eine Lerneinheit mit Bezug auf die Inhalte des Graduiertenkollegs, bestehend aus einem Lehr-Lern-Experiment und den dazugehörigen Begleitmaterialien, konzipiert. Anschließend wurde die Lerneinheit in eine der Wissenschaftskommunikationsmaßnahmen integriert. Je nach Anforderung an die Doktoranden, wurden die Maßnahmen durch vorbereitende Workshops ergänzt. Durch einen halboffenen Pre-Post-Fragebogen wurde der Einfluss der Wissenschaftskommunikationsmaßnahmen und der dazugehörigen Workshops auf die Selbstwirksamkeit der Doktoranden evaluiert, um Rückschlüsse darauf zu ziehen, wie sich die Wahrnehmung der eigenen Kommunikationsfähigkeiten durch die Interventionen verändert. Die Ergebnisse deuten darauf hin, dass die einzelnen Wissenschaftskommunikationsmaßnahmen die verschiedenen Typen in unterschiedlicher Weise beeinflussen. Es ist anzunehmen, dass es abhängig von der eigenen Einschätzung der Kommunikationsfähigkeit unterschiedliche Bedürfnisse der Förderung gibt, die durch dedizierte Wissenschaftskommunikationsmaßnahmen berücksichtigt werden können. Auf dieser Grundlage werden erste Ansätze für eine allgemeingültige Strategie vorgeschlagen, die die individuellen Fähigkeiten zur Wissenschaftskommunikation in einem naturwissenschaftlichen Forschungsverbund fördert. N2 - As part of an exploratory research approach a concept for science communication was developed and evaluated for a research training group that focuses on photochemical processes. The increasing demand for science communication by politics justifies this approach. Furthermore, for future scientists the communication of their own research is demanded to be an integrative part of good scientific practice. To prepare young researchers for the upcoming task at an early stage, science communication is also required in research associations. Hence, a preliminary study was conducted to first investigate the requirements of a science communication concept by evaluating doctoral students’ attitudes towards science communication and their communication skills using a questionnaire comprising closed questions. Moreover, science communication types where derived from the data. Based on these results multiple science communication measures that differ in the conception, the recipients, the form of the communication and their content were developed. With reference to the content of the graduate program an experiment and the accompanying material for teaching was designed. It can be used in schools and extracurricular learning settings. Subsequently, the teaching unit was implemented into one measure. Depending on the requirements of each science communication measure for the doctoral students the measures were complemented by preparatory workshops. Through a semi-open pre-post questionnaire, the impact of the science communication measures and the associated workshops on the doctoral students’ self-efficacy was evaluated. Also, conclusions about how the perception of their own communication skills changed as a result of the intervention could be drawn. The results suggest that the individual science communication measures affect the different types in various ways. It is likely that depending on one’s assessment of communication skills, there are different funding needs that can be addressed through dedicated measures. In this way, a generally applicable strategy which promotes individual science communication skills in a scientific research association will be proposed. KW - Wissenschaftskommunikation KW - Curriculare Innovation KW - Chemie KW - Elektrolumineszenz KW - Lerneinheit KW - Elektrolumineszenz-Folie KW - Wissenschaftskommunikationstypen KW - chemistry KW - curriculum innovation KW - electroluminescence KW - electroluminescent foil KW - learning unit KW - science communication KW - science communication types Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-620357 ER - TY - THES A1 - Eren, Enis Oğuzhan T1 - Covalent anode materials for high-energy sodium-ion batteries T1 - Kovalente Anodenmaterialien für hoch-energetische Natrium-Ionen-Batterien N2 - The reliance on fossil fuels has resulted in an abnormal increase in the concentration of greenhouse gases, contributing to the global climate crisis. In response, a rapid transition to renewable energy sources has begun, particularly lithium-ion batteries, playing a crucial role in the green energy transformation. However, concerns regarding the availability and geopolitical implications of lithium have prompted the exploration of alternative rechargeable battery systems, such as sodium-ion batteries. Sodium is significantly abundant and more homogeneously distributed in the crust and seawater, making it easier and less expensive to extract than lithium. However, because of the mysterious nature of its components, sodium-ion batteries are not yet sufficiently advanced to take the place of lithium-ion batteries. Specifically, sodium exhibits a more metallic character and a larger ionic radius, resulting in a different ion storage mechanism utilized in lithium-ion batteries. Innovations in synthetic methods, post-treatments, and interface engineering clearly demonstrate the significance of developing high-performance carbonaceous anode materials for sodium-ion batteries. The objective of this dissertation is to present a systematic approach for fabricating efficient, high-performance, and sustainable carbonaceous anode materials for sodium-ion batteries. This will involve a comprehensive investigation of different chemical environments and post-modification techniques as well. This dissertation focuses on three main objectives. Firstly, it explores the significance of post-synthetic methods in designing interfaces. A conformal carbon nitride coating is deposited through chemical vapor deposition on a carbon electrode as an artificial solid-electrolyte interface layer, resulting in improved electrochemical performance. The interaction between the carbon nitride artificial interface and the carbon electrode enhances initial Coulombic efficiency, rate performance, and total capacity. Secondly, a novel process for preparing sulfur-rich carbon as a high-performing anode material for sodium-ion batteries is presented. The method involves using an oligo-3,4-ethylenedioxythiophene precursor for high sulfur content hard carbon anode to investigate the sulfur heteroatom effect on the electrochemical sodium storage mechanism. By optimizing the condensation temperature, a significant transformation in the materials’ nanostructure is achieved, leading to improved electrochemical performance. The use of in-operando small-angle X-ray scattering provides valuable insights into the interaction between micropores and sodium ions during the electrochemical processes. Lastly, the development of high-capacity hard carbon, derived from 5-hydroxymethyl furfural, is examined. This carbon material exhibits exceptional performance at both low and high current densities. Extensive electrochemical and physicochemical characterizations shed light on the sodium storage mechanism concerning the chemical environment, establishing the material’s stability and potential applications in sodium-ion batteries. N2 - Die Abhängigkeit von fossilen Brennstoffen hat zu einem abnormalen Anstieg von Treibhausgasen in der Atmosphäre geführt, was zur globalen Klimakrise beiträgt. Als Reaktion darauf hat eine rasche Umstellung auf erneuerbare Energiequellen begonnen, insbesondere Lithium-Ionen-Batterien, die eine entscheidende Rolle in der grünen Energiewende spielen. Bedenken hinsichtlich der Verfügbarkeit und geopolitischen Implikationen von Lithium haben jedoch die Erforschung alternativer wiederaufladbarer Batteriesysteme wie Natrium-Ionen-Batterien angeregt. Natrium ist in der Erdkruste und im Meerwasser deutlich häufiger und gleichmäßiger verteilt, was seine Extraktion im Vergleich zu Lithium einfacher und kostengünstiger macht. Aufgrund der geheimnisvollen Natur ihrer Komponenten sind Natrium-Ionen-Batterien derzeit noch nicht ausreichend fortgeschritten, um Lithium-Ionen-Batterien zu ersetzen. Insbesondere weist Natrium einen stärker metallischen Charakter und einen größeren Ionenradius auf, was zu einem anderen Ionen-Speichermechanismus führt, der in Lithium-Ionen-Batterien verwendet wird. Innovationen in synthetischen, post-synthetischen Methoden und Schnittstellentechnik zeigen deutlich die Bedeutung der Entwicklung hochleistungsfähiger kohlenstoffhaltiger Anodenmaterialien für Natrium-Ionen-Batterien auf. Das Ziel dieser Dissertation ist es, einen systematischen Ansatz zur Herstellung effizienter, leistungsstarker und nachhaltiger kohlenstoffhaltiger Anodenmaterialien für Natrium-Ionen-Batterien zu untersuchen. Diese Dissertation konzentriert sich auf drei Hauptziele. Erstens untersucht sie die Bedeutung von post-synthetischen Methoden bei der Gestaltung von Schnittstellen. Eine konforme Kohlenstoffnitrid-Beschichtung wird durch chemische Gasphasenabscheidung auf einer Kohlenstoffelektrode als künstliche Festelektrolytschnittstelle abgeschieden, was zu einer verbesserten elektrochemischen Leistung führt. Die Wechselwirkung zwischen der künstlichen Kohlenstoffnitrid-Schnittstelle und der Kohlenstoffelektrode trägt zu einer verbesserten anfänglichen kolumbischen Effizienz, Leistung bei hohen Raten und Gesamtkapazität bei. Zweitens wird ein neuartiger Prozess zur Herstellung von schwefelreichem Kohlenstoff als hochleistungsfähiges Anodenmaterial für Natrium-Ionen-Batterien vorgestellt. Die Methode verwendet einen Oligo-3,4-ethylendioxythiophen-Vorläufer für eine harte Kohlenstoffanode mit hohem Schwefelgehalt, um den Effekt des Schwefelheteroatoms auf den elektrochemischen Natriumspeichermechanismus zu untersuchen. Durch Optimierung der Kondensationstemperatur wird eine bedeutende Transformation in der Nanostruktur des Materials erreicht, was zu einer verbesserten elektrochemischen Leistung führt. Der Einsatz von in-operando-Röntgenkleinwinkelstreuung liefert wertvolle Erkenntnisse über die Wechselwirkung zwischen Mikroporen und Natriumionen während der elektrochemischen Prozesse. Letzendlich wird die Entwicklung einer hochkapazitiven harten Kohlenstoffanode, die aus 5-Hydroxymethylfurfural gewonnen wird, untersucht. Dieses Kohlenstoffmaterial zeigt eine außergewöhnliche Leistung sowohl bei niedrigen als auch bei hohen Stromdichten. KW - sodium-ion battery KW - sulfur KW - carbon KW - CN KW - anode KW - in-operando SAXS KW - Kohlenstoffnitrid (CN) KW - Anode KW - Kohlenstoff KW - in-operando SAXS KW - Natrium-Ionen-Batterie KW - Schwefel Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-622585 ER - TY - THES A1 - Martínez Guajardo, Alejandro T1 - New zwitterionic polymers for antifouling applications T1 - Neue zwitterionische Polymere für Antifouling-Anwendungen N2 - The remarkable antifouling properties of zwitterionic polymers in controlled environments are often counteracted by their delicate mechanical stability. In order to improve the mechanical stabilities of zwitterionic hydrogels, the effect of increased crosslinker densities was thus explored. In a first approach, terpolymers of zwitterionic monomer 3-[N -2(methacryloyloxy)ethyl-N,N-dimethyl]ammonio propane-1-sulfonate (SPE), hydrophobic monomer butyl methacrylate (BMA), and photo-crosslinker 2-(4-benzoylphenoxy)ethyl methacrylate (BPEMA) were synthesized. Thin hydrogel coatings of the copolymers were then produced and photo-crosslinked. Studies of the swollen hydrogel films showed that not only the mechanical stability but also, unexpectedly, the antifouling properties were improved by the presence of hydrophobic BMA units in the terpolymers. Based on the positive results shown by the amphiphilic terpolymers and in order to further test the impact that hydrophobicity has on both the antifouling properties of zwitterionic hydrogels and on their mechanical stability, a new amphiphilic zwitterionic methacrylic monomer, 3-((2-(methacryloyloxy)hexyl)dimethylammonio)propane-1-sulfonate (M1), was synthesized in good yields in a multistep synthesis. Homopolymers of M1 were obtained by free-radical polymerization. Similarly, terpolymers of M1, zwitterionic monomer SPE, and photo-crosslinker BPEMA were synthesized by free-radical copolymerization and thoroughly characterized, including its solubilities in selected solvents. Also, a new family of vinyl amide zwitterionic monomomers, namely 3-(dimethyl(2-(N -vinylacetamido)ethyl)ammonio)propane-1-sulfonate (M2), 4-(dimethyl(2-(N-vinylacetamido)ethyl)ammonio)butane-1-sulfonate (M3), and 3-(dimethyl(2-(N-vinylacetamido)ethyl)ammonio)propyl sulfate (M4), together with the new photo-crosslinker 4-benzoyl-N-vinylbenzamide (M5) that is well-suited for copolymerization with vinylamides, are introduced within the scope of the present work. The monomers are synthesized with good yields developing a multistep synthesis. Homopolymers of the new vinyl amide zwitterionic monomers are obtained by free-radical polymerization and thoroughly characterized. From the solubility tests, it is remarkable that the homopolymers produced are fully soluble in water, evidence of their high hydrophilicity. Copolymerization of the vinyl amide zwitterionic monomers, M2, M3, and M4 with the vinyl amide photo-crosslinker M5 proved to require very specific polymerization conditions. Nevertheless, copolymers were successfully obtained by free-radical copolymerization under appropriate conditions. Moreover, in an attempt to mitigate the intrinsic hydrophobicity introduced in the copolymers by the photo-crosslinkers, and based on the proven affinity of quaternized diallylamines to copolymerize with vinyl amides, a new quaternized diallylamine sulfobetaine photo-crosslinker 3-(diallyl(2-(4-benzoylphenoxy)ethyl)ammonio)propane-1-sulfonate (M6) is synthesized. However, despite a priori promising copolymerization suitability, copolymerization with the vinyl amide zwitterionic monomers could not be achieved. N2 - Die hervorragenden Antifouling-Eigenschaften zwitterionischer Polymere in kontrollierten Bedingungen werden häufig durch ihre geringe mechanische Stabilität beeinträchtigt. Um die mechanische Eigenschaften zwitterionischer Hydrogele zu verbessern, wurde daher der Effekt einer erhöhten Vernetzungsdichte untersucht. In einem ersten Ansatz wurden Terpolymere aus dem zwitterionischen Monomer 3-[N -2(Methacryloyloxy)ethyl-N,N-dimethyl]ammonio propan-1-sulfonat (SPE), dem hydrophoben Monomer Butylmethacrylat (BMA) und dem Photovernetzer 2-(4-Benzoylphenoxy)ethylmethacrylat (BPEMA) synthetisiert. Daraufhin wurden dünne Beschichtungen der Copolymere hergestellt und photovernetzt. Die Untersuchung der gequollenen Hydrogelfilme zeigte, dass nicht nur die mechanischen Eigenschaften, sondern überraschenderweise auch die Antifouling-Eigenschaften der Hydrogele durch den Einbau von hydrophoben BMA-Einheiten in die Terpolymere verbessert wurden. Aufgrund der positiven Ergebnisse der amphiphilen Terpolymere und um die Auswirkungen der Hydrophobie sowohl auf die Antifouling- als auch auf die mechanische Eigenschaften der zwitterionischen Hydrogele zu testen, wurde ein neues amphiphiles zwitterionisches Methacrylat, nämlich 3-((2-(Methacryloyloxy)hexyl)dimethylammonio)propan-1-sulfonat (M1), in guter Ausbeute synthetisiert. Homopolymere von M1 wurden durch radikalische Polymerisation erhalten. In ähnlicher Weise wurden Terpolymere aus M1, dem zwitterionischen Monomer SPE und dem Photovernetzer BPEMA durch radikalische Copolymerisation synthetisiert und gründlich charakterisiert, einschließlich ihrer Löslichkeiten in ausgewählten Lösungsmitteln. Außerdem wurde im Rahmen der vorliegenden Arbeit eine neue Familie von zwitterionischen Vinylamidmonomeren, nämlich 3-(Dimethyl(2-(N-vinylacetamido)ethyl)ammonio)propan-1-sulfonat (M2), 4-(Dimethyl(2-(N -vinylacetamido)ethyl)ammonio)butan-1-sulfonat (M3) und 3-(Dimethyl(2-(N -vinylacetamido)ethyl)ammonio)propylsulfat (M4), zusammen mit einem geeigneten Vinylamid-Photovernetzer, nämlich 4-Benzoyl-N -vinylbenzamide (M5) entwickelt. Die Monomere wurden in einer Mehrstufen-Synthese mit guten Ausbeuten synthetisiert. Homopolymere der neuen zwitterionischen Vinylamidmonomere wurden durch radikalische Polymerisation erhalten und eingehend charakterisiert. Die Löslichkeitstests zeigen, dass die hergestellten Homopolymere bemerkenswerterweise vollständig in reinem Wasser löslich sind, was ihre hohe Hydrophilie beweist. Die Copolymerisation der zwitterionischen Vinylamidmonomere M2, M3 und M4 mit dem Vinylamid-Photovernetzer M5 erwies sich als schwierig. Die Copolymere lassen sich dennoch unter sehr spezifische Bedingungen durch radikalische Copolymerisation herstellen. Des Weiteren, um die durch die Photovernetzer in die Copolymere eingebrachte inhärente Hydrophobie zu mindern und aufgrund ihrer nachgewiesenen Affinität zur Copolymerisation mit Vinylamiden, wurde ein neuer quaternisierter Diallylaminsulfobetain-Photovernetzer 3-(Diallyl(2-(4-benzoylphenoxy)ethyl)ammonio)propan-1-sulfonat (M6) synthetisiert. Trotz a priori vielversprechender Copolymerisationseignung konnte jedoch keine Copolymerisation mit den zwitterionischen Vinylamidmonomeren erreicht werden. KW - antifouling KW - Antifouling KW - copolymers KW - Copolymere KW - hydrogels KW - Hydrogele KW - zwitterions KW - Zwitterionen KW - synthesis KW - Synthese Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-626820 ER - TY - THES A1 - Hussein, Mahmoud T1 - Solvent engineering for highly-efficiency lead-free perovskite solar cells T1 - Lösungsmitteltechnik für hocheffiziente Zinn-Perowskit-Solarzellen N2 - Global warming, driven primarily by the excessive emission of greenhouse gases such as carbon dioxide into the atmosphere, has led to severe and detrimental environmental impacts. Rising global temperatures have triggered a cascade of adverse effects, including melting glaciers and polar ice caps, more frequent and intense heat waves disrupted weather patterns, and the acidification of oceans. These changes adversely affect ecosystems, biodiversity, and human societies, threatening food security, water availability, and livelihoods. One promising solution to mitigate the harmful effects of global warming is the widespread adoption of solar cells, also known as photovoltaic cells. Solar cells harness sunlight to generate electricity without emitting greenhouse gases or other pollutants. By replacing fossil fuel-based energy sources, solar cells can significantly reduce CO2 emissions, a significant contributor to global warming. This transition to clean, renewable energy can help curb the increasing concentration of greenhouse gases in the atmosphere, thereby slowing down the rate of global temperature rise. Solar energy’s positive impact extends beyond emission reduction. As solar panels become more efficient and affordable, they empower individuals, communities, and even entire nations to generate electricity and become less dependent on fossil fuels. This decentralized energy generation can enhance resilience in the face of climate-related challenges. Moreover, implementing solar cells creates green jobs and stimulates technological innovation, further promoting sustainable economic growth. As solar technology advances, its integration with energy storage systems and smart grids can ensure a stable and reliable energy supply, reducing the need for backup fossil fuel power plants that exacerbate environmental degradation. The market-dominant solar cell technology is silicon-based, highly matured technology with a highly systematic production procedure. However, it suffers from several drawbacks, such as: 1) Cost: still relatively high due to high energy consumption due to the need to melt and purify silicon, and the use of silver as an electrode, which hinders their widespread availability, especially in low-income countries. 2) Efficiency: theoretically, it should deliver around 29%; however, the efficiency of most of the commercially available silicon-based solar cells ranges from 18 – 22%. 3) Temperature sensitivity: The efficiency decreases with the increase in the temperature, affecting their output. 4) Resource constraints: silicon as a raw material is unavailable in all countries, creating supply chain challenges. Perovskite solar cells arose in 2011 and matured very rapidly in the last decade as a highly efficient and versatile solar cell technology. With an efficiency of 26%, high absorption coefficients, solution processability, and tunable band gap, it attracted the attention of the solar cells community. It represented a hope for cheap, efficient, and easily processable next-generation solar cells. However, lead toxicity might be the block stone hindering perovskite solar cells’ market reach. Lead is a heavy and bioavailable element that makes perovskite solar cells environmentally unfriendly technology. As a result, scientists try to replace lead with a more environmentally friendly element. Among several possible alternatives, tin was the most suitable element due to its electronic and atomic structure similarity to lead. Tin perovskites were developed to alleviate the challenge of lead toxicity. Theoretically, it shows very high absorption coefficients, an optimum band gap of 1.35 eV for FASnI3, and a very high short circuit current, which nominates it to deliver the highest possible efficiency of a single junction solar cell, which is around 30.1% according to Schockly-Quisser limit. However, tin perovskites’ efficiency still lags below 15% and is irreproducible, especially from lab to lab. This humble performance could be attributed to three reasons: 1) Tin (II) oxidation to tin (IV), which would happen due to oxygen, water, or even by the effect of the solvent, as was discovered recently. 2) fast crystallization dynamics, which occurs due to the lateral exposure of the P-orbitals of the tin atom, which enhances its reactivity and increases the crystallization pace. 3) Energy band misalignment: The energy bands at the interfaces between the perovskite absorber material and the charge selective layers are not aligned, leading to high interfacial charge recombination, which devastates the photovoltaic performance. To solve these issues, we implemented several techniques and approaches that enhanced the efficiency of tin halide perovskites, providing new chemically safe solvents and antisolvents. In addition, we studied the energy band alignment between the charge transport layers and the tin perovskite absorber. Recent research has shown that the principal source of tin oxidation is the solvent known as dimethylsulfoxide, which also happens to be one of the most effective solvents for processing perovskite. The search for a stable solvent might prove to be the factor that makes all the difference in the stability of tin-based perovskites. We started with a database of over 2,000 solvents and narrowed it down to a series of 12 new solvents that are suitable for processing FASnI3 experimentally. This was accomplished by looking into 1) the solubility of the precursor chemicals FAI and SnI2, 2) the thermal stability of the precursor solution, and 3) the potential to form perovskite. Finally, we show that it is possible to manufacture solar cells using a novel solvent system that outperforms those produced using DMSO. The results of our research give some suggestions that may be used in the search for novel solvents or mixes of solvents that can be used to manufacture stable tin-based perovskites. Due to the quick crystallization of tin, it is more difficult to deposit tin-based perovskite films from a solution than manufacturing lead-based perovskite films since lead perovskite is more often utilized. The most efficient way to get high efficiencies is to deposit perovskite from dimethyl sulfoxide (DMSO), which slows down the quick construction of the tin-iodine network that is responsible for perovskite synthesis. This is the most successful approach for achieving high efficiencies. Dimethyl sulfoxide, which is used in the processing, is responsible for the oxidation of tin, which is a disadvantage of this method. This research presents a potentially fruitful alternative in which 4-(tert-butyl) pyridine can substitute dimethyl sulfoxide in the process of regulating crystallization without causing tin oxidation to take place. Perovskite films that have been formed from pyridine have been shown to have a much-reduced defect density. This has resulted in increased charge mobility and better photovoltaic performance, making pyridine a desirable alternative for use in the deposition of tin perovskite films. The precise control of perovskite precursor crystallization inside a thin film is of utmost importance for optimizing the efficiency and manufacturing of solar cells. The deposition process of tin-based perovskite films from a solution presents difficulties due to the quick crystallization of tin compared to the more often employed lead perovskite. The optimal approach for attaining elevated efficiencies entails using dimethyl sulfoxide (DMSO) as a medium for depositing perovskite. This choice of solvent impedes the tin-iodine network’s fast aggregation, which plays a crucial role in the production of perovskite. Nevertheless, this methodology is limited since the utilization of dimethyl sulfoxide leads to the oxidation of tin throughout the processing stage. In this thesis, we present a potentially advantageous alternative approach wherein 4-(tert-butyl) pyridine is proposed as a substitute for dimethyl sulfoxide in regulating crystallization processes while avoiding the undesired consequence of tin oxidation. Films of perovskite formed using pyridine as a solvent have a notably reduced density of defects, resulting in higher mobility of charges and improved performance in solar applications. Consequently, the utilization of pyridine for the deposition of tin perovskite films is considered advantageous. Tin perovskites are suffering from an apparent energy band misalignment. However, the band diagrams published in the current body of research display contradictions, resulting in a dearth of unanimity. Moreover, comprehensive information about the dynamics connected with charge extraction is lacking. This thesis aims to ascertain the energy band locations of tin perovskites by employing the kelvin probe and Photoelectron yield spectroscopy methods. This thesis aims to construct a precise band diagram for the often-utilized device stack. Moreover, a comprehensive analysis is performed to assess the energy deficits inherent in the current energetic structure of tin halide perovskites. In addition, we investigate the influence of BCP on the improvement of electron extraction in C60/BCP systems, with a specific emphasis on the energy factors involved. Furthermore, transient surface photovoltage was utilized to investigate the charge extraction kinetics of frequently studied charge transport layers, such as NiOx and PEDOT as hole transport layers and C60, ICBA, and PCBM as electron transport layers. The Hall effect, KP, and TRPL approaches accurately ascertain the p-doping concentration in FASnI3. The results consistently demonstrated a value of 1.5 * 1017 cm-3. Our research findings highlight the imperative nature of autonomously constructing the charge extraction layers for tin halide perovskites, apart from those used for lead perovskites. The crystallization of perovskite precursors relies mainly on the utilization of two solvents. The first one dissolves the perovskite powder to form the precursor solution, usually called the solvent. The second one precipitates the perovskite precursor, forming the wet film, which is a supersaturated solution of perovskite precursor and in the remains of the solvent and the antisolvent. Later, this wet film crystallizes upon annealing into a full perovskite crystallized film. In our research context, we proposed new solvents to dissolve FASnI3, but when we tried to form a film, most of them did not crystallize. This is attributed to the high coordination strength between the metal halide and the solvent molecules, which is unbreakable by the traditionally used antisolvents such as Toluene and Chlorobenzene. To solve this issue, we introduce a high-throughput antisolvent screening in which we screened around 73 selected antisolvents against 15 solvents that can form a 1M FASnI3 solution. We used for the first time in tin perovskites machine learning algorithm to understand and predict the effect of an antisolvent on the crystallization of a precursor solution in a particular solvent. We relied on film darkness as a primary criterion to judge the efficacy of a solvent-antisolvent pair. We found that the relative polarity between solvent and antisolvent is the primary factor that affects the solvent-antisolvent interaction. Based on our findings, we prepared several high-quality tin perovskite films free from DMSO and achieved an efficiency of 9%, which is the highest DMSO tin perovskite device so far. N2 - Zinn ist eine der vielversprechendsten Alternativen zu Blei, um bleifreie Halogenidperowskite für die Optoelektronik herzustellen. Die Stabilität von Perowskiten auf Zinnbasis wird jedoch durch die Oxidation von Sn(II) zu Sn(IV) beeinträchtigt. Jüngste Arbeiten haben ergeben, dass Dimethylsulfoxid, eines der besten Lösungsmittel für die Verarbeitung von Perowskiten, die Hauptquelle für die Oxidation von Zinn ist. Die Suche nach einem stabilen Lösungsmittel könnte den Ausschlag für die Stabilität von Perowskiten auf Zinnbasis geben. Ausgehend von einer Datenbank mit über 2000 Lösungsmitteln haben wir eine Reihe von 12 neuen Lösungsmitteln identifiziert, die für die Verarbeitung von Formamidinium-Zinniodid-Perowskit (FASnI3) geeignet sind, indem wir 1) die Löslichkeit der Vorläuferchemikalien FAI und SnI2, 2) die thermische Stabilität der Vorläuferlösung und 3) die Möglichkeit zur Bildung von Perowskit experimentell untersucht haben. Schließlich demonstrieren wir ein neues Lösungsmittelsystem zur Herstellung von Solarzellen, das die auf DMSO basierenden Zellen übertrifft. Unsere Arbeit liefert Leitlinien für die weitere Identifizierung neuer Lösungsmittel oder Lösungsmittelmischungen zur Herstellung stabiler Perowskite auf Zinnbasis. Die genaue Steuerung der Kristallisation des Perowskit-Vorläufers in einer Dünnschicht ist entscheidend für die Effizienz und Produktion von Solarzellen. Die Abscheidung von Perowskit-Filmen auf Zinnbasis aus einer Lösung stellt aufgrund der schnellen Kristallisation von Zinn im Vergleich zu dem üblicherweise verwendeten Bleiperowskit eine Herausforderung dar. Die effektivste Methode zur Erzielung hoher Wirkungsgrade ist die Abscheidung von Perowskit aus Dimethylsulfoxid (DMSO), das den schnellen Aufbau des für die Perowskitbildung verantwortlichen Zinn-Jod-Netzwerks behindert. Dieser Ansatz hat jedoch einen Nachteil, da Dimethylsulfoxid während der Verarbeitung eine Zinnoxidation verursacht. In dieser Studie wird eine vielversprechende Alternative vorgestellt, bei der 4-(tert-Butyl)-pyridin Dimethylsulfoxid bei der Steuerung der Kristallisation ersetzen kann, ohne eine Zinnoxidation zu verursachen. Aus Pyridin abgeschiedene Perowskit-Filme weisen eine deutlich geringere Defektdichte auf, was zu einer erhöhten Ladungsbeweglichkeit und einer verbesserten photovoltaischen Leistung führt und es zu einer günstigen Wahl für die Abscheidung von Zinn-Perowskit-Filmen macht. Zinnperowskite haben sich als vielversprechender, umweltverträglicher Ersatz für Bleiperowskite erwiesen, vor allem wegen ihrer besseren optoelektronischen Eigenschaften und ihrer geringeren Bioverfügbarkeit. Dennoch gibt es mehrere Gründe, warum die Leistung von Zinnperowskiten nicht mit der von Bleiperowskiten verglichen werden kann. Einer dieser Gründe ist die Nichtübereinstimmung der Energiebänder zwischen dem Perowskit-Absorberfilm und den ladungstransportierenden Schichten (CTLs). Die in der vorhandenen Literatur dargestellten Banddiagramme sind jedoch uneinheitlich, was zu einem Mangel an Konsens führt. Außerdem ist das Verständnis der mit der Ladungsextraktion verbundenen Dynamik noch unzureichend. In dieser Studie sollen die Energiebandpositionen von Zinnperowskiten mit Hilfe der Kelvinsonde (KP) und der Photoelektronenausbeutespektroskopie (PYS) bestimmt werden. Ziel ist es, ein genaues Banddiagramm für den üblicherweise verwendeten Bauelementestapel zu erstellen. Darüber hinaus führen wir eine Diagnose der energetischen Unzulänglichkeiten durch, die im bestehenden energetischen Rahmen von Zinnhalogenid-Perowskiten vorhanden sind. Unser Ziel ist es, Folgendes zu klären den Einfluss von BCP auf die Verbesserung der Elektronenextraktion in C60/BCP-Systemen, wobei der Schwerpunkt auf den energetischen Aspekten liegt. Darüber hinaus haben wir die transiente Oberflächenphotospannung (tr-SPV) eingesetzt, um Einblicke in die Ladungsextraktionskinetik von allgemein bekannten CTLs zu gewinnen, einschließlich NiOx und PEDOT als Lochtransportschichten (HTLs) und C60, ICBA und PCBM als Elektronentransportschichten (ETLs). In diesem Kapitel verwenden wir den Halleffekt, KP- und TRPL-Techniken, um die genaue p-Dotierungskonzentration in FASnI3 zu bestimmen. Unsere Ergebnisse ergaben durchweg einen Wert von 1.5 * 1017 cm-3. Die Ergebnisse unserer Studie zeigen, dass es notwendig ist, die Ladungsextraktionsschichten von Zinnhalogenidperowskiten unabhängig von den Bleiperowskiten zu entwickeln. Die Kristallisation von Perowskit-Vorstufen beruht hauptsächlich auf der Verwendung von zwei Lösungsmitteln. Das erste löst das Perowskit-Pulver auf und bildet die Vorläuferlösung, die üblicherweise als Lösungsmittel bezeichnet wird. Mit dem zweiten wird der Perowskit-Precursor ausgefällt, wobei sich der Nassfilm bildet, der eine übersättigte Lösung des Perowskit-Precursors und der Reste des Lösungsmittels und des Antisolierungsmittels ist. Später kristallisiert dieser nasse Film beim Ausglühen zu einem vollständig kristallisierten Perowskit-Film. In unserem Forschungskontext haben wir neue Lösungsmittel vorgeschlagen, um FASnI3 aufzulösen, aber als wir versuchten, einen Film zu bilden, kristallisierten die meisten von ihnen nicht. Dies ist auf die hohe Koordinationsstärke zwischen dem Metallhalogenid und den Lösungsmittelmolekülen zurückzuführen, die von den traditionell verwendeten Antisolierungsmitteln wie Toluol und Chlorbenzol nicht aufgebrochen werden kann. Um dieses Problem zu lösen, haben wir ein Hochdurchsatz-Screening von Antisolventien durchgeführt, bei dem wir 73 ausgewählte Antisolventien mit 15 Lösungsmitteln verglichen haben, die eine 1M FASnI3-Lösung bilden können. Wir haben zum ersten Mal bei Zinnperowskiten einen Algorithmus für maschinelles Lernen verwendet, um die Wirkung eines Antisolvens auf die Kristallisation einer Vorläuferlösung in einem bestimmten Lösungsmittel zu verstehen und vorherzusagen. Wir stützten uns auf die Schwärzung des Films als primäres Kriterium zur Beurteilung der Wirksamkeit eines Lösungsmittel-Antisolierungsmittel-Paares. Wir fanden heraus, dass die relative Polarität zwischen Lösungsmittel und Antisolvent der wichtigste Faktor ist, der die Wechselwirkung zwischen Lösungsmittel und Antisolvent beeinflusst. Auf der Grundlage unserer Erkenntnisse haben wir mehrere hochwertige Zinn-Perowskit-Filme ohne DMSO hergestellt und einen Wirkungsgrad von 9 % erzielt, was die bisher höchste DMSO-Zinn-Perowskit-Vorrichtung darstellt. KW - perovskite solar cells KW - lead-free perovskites KW - tin perovskites KW - solar cells KW - perovskite KW - Perowskit-Solarzellen KW - photovoltaische Materialien KW - Solarzellen KW - Lösungsmittel KW - bleifreie Perowskit-Solarzellen Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-630375 ER - TY - JOUR A1 - Brinkmann, Pia A1 - Köllner, Nicole A1 - Merk, Sven A1 - Beitz, Toralf A1 - Altenberger, Uwe A1 - Löhmannsröben, Hans-Gerd T1 - Comparison of handheld and echelle spectrometer to assess copper in ores by means of laser-induced breakdown spectroscopy (LIBS) JF - Minerals N2 - Its properties make copper one of the world’s most important functional metals. Numerous megatrends are increasing the demand for copper. This requires the prospection and exploration of new deposits, as well as the monitoring of copper quality in the various production steps. A promising technique to perform these tasks is Laser Induced Breakdown Spectroscopy (LIBS). Its unique feature, among others, is the ability to measure on site without sample collection and preparation. In this work, copper-bearing minerals from two different deposits are studied. The first set of field samples come from a volcanogenic massive sulfide (VMS) deposit, the second part from a stratiform sedimentary copper (SSC) deposit. Different approaches are used to analyze the data. First, univariate regression (UVR) is used. However, due to the strong influence of matrix effects, this is not suitable for the quantitative analysis of copper grades. Second, the multivariate method of partial least squares regression (PLSR) is used, which is more suitable for quantification. In addition, the effects of the surrounding matrices on the LIBS data are characterized by principal component analysis (PCA), alternative regression methods to PLSR are tested and the PLSR calibration is validated using field samples. KW - LIBS KW - copper-bearing minerals KW - UVR KW - PCA KW - PLSR Y1 - 2023 U6 - https://doi.org/10.3390/min13010113 SN - 2075-163X VL - 13 IS - 1 PB - MDPI CY - Basel ER - TY - THES A1 - Badetko, Dominik T1 - Untersuchungen zur Totalsynthese von Arylnaphthalen-Lignanen mittels Photo-Dehydro-Diels-Alder-Reaktion als Schlüsselschritt T1 - Studies on the total synthesis of arylnaphthalene lignans using Photo-Dehydro-Diels-Alder reaction as a key step N2 - Im Rahmen dieser Dissertation wurden die erstmaligen Totalsynthesen der Arylnaphthalen-Lignane Alashinol D, Vitexdoin C, Vitrofolal E, Noralashinol C1 und Ternifoliuslignan E vorgestellt. Der Schlüsselschritt der entwickelten Methode, basiert auf einer regioselektiven intramolekularen Photo-Dehydro-Diels-Alder (PDDA)-Reaktion, die mittels UV-Strahlung im Durchflussreaktor durchgeführt wurde. Bei der Synthese der PDDA-Vorläufer (Diarylsuberate) wurde eine Synthesestrategie nach dem Baukastenprinzip verfolgt. Diese ermöglicht die Darstellung asymmetrischer komplexer Systeme aus nur wenigen Grundbausteinen und die Totalsynthese einer Vielzahl an Lignanen. In systematischen Voruntersuchungen konnte zudem die klare Überlegenheit der intra- gegenüber der intermolekularen PDDA-Reaktion aufgezeigt werden. Dabei stellte sich eine Verknüpfung der beiden Arylpropiolester über einen Korksäurebügel, in para-Position, als besonders effizient heraus. Werden asymmetrisch substituierte Diarylsuberate, bei denen einer der endständigen Estersubstituenten durch eine Trimethylsilyl-Gruppe oder ein Wasserstoffatom ersetzt wurde, verwendet, durchlaufen diese Systeme eine regioselektive Cyclisierung und als Hauptprodukt werden Naphthalenophane mit einem Methylester in 3-Position erhalten. Mit Hilfe von umfangreichen Experimenten zur Funktionalisierung der 4-Position, konnte zudem gezeigt werden, dass die Substitution der nucleophilen Cycloallen-Intermediate, während der PDDA-Reaktion, generell durch die Zugabe von N-Halogen-Succinimiden möglich ist. In Anbetracht der geringen Ausbeuten haben diese intermolekularen Abfangreaktionen, jedoch keinen präparativen Nutzen für die Totalsynthesen von Lignanen. Mit dem Ziel die allgemeinen photochemischen Reaktionsbedingungen zu optimieren, wurde erstmalig die triplettsensibilisierte PDDA-Reaktion vorgestellt. Durch die Verwendung von Xanthon als Sensibilisator wurde der Einsatz von effizienteren UVA-Lichtquellen ermöglicht, wodurch die Gefahr einer Photozersetzung durch Überbestrahlung minimiert wurde. Im Vergleich zur direkten Anregung mit UVB-Strahlung, konnten die Ausbeuten mit indirekter Anregung durch einen Photokatalysator signifikant gesteigert werden. Die grundlegenden Erkenntnisse und die entwickelten Synthesestrategien dieser Arbeit, können dazu beitragen zukünftig die Erschließung neuer pharmakologisch interessanter Lignane voranzutreiben. 1 Bisher ist nur die semisynthetische Darstellung von Noralashinol C ausgehend von Hydroxymatairesinol literaturbekannt. N2 - In this dissertation, the first total syntheses of the arylnaphthalene lignans alashinol D, vitexdoin C, vitrofolal E, noralashinol C (1) and ternifoliuslignan E were presented. The key step of the developed method, is based on a regioselective intramolecular photo-dehydro-Diels-Alder (PDDA) reaction, which was carried out using UV radiation in a flow reactor. For the synthesis of the PDDA precursors (diaryl suberates), a synthesis strategy based on the modular principle was followed. This allows the preparation of asymmetric complex systems from only a few basic building blocks and the total synthesis of a large number of lignans. Systematic preliminary studies have also demonstrated the clear superiority of the intra- versus intermolecular PDDA reaction. In this context, linking the two arylpropiol esters via a subaric acide linker, in the para position, was found to be particularly efficient. If asymmetrically substituted diaryl suberates, in which one of the terminal ester substituents has been replaced by a trimethylsilyl group or a hydrogen atom, are used, these systems undergo regioselective cyclization and naphthalenophanes with a methyl ester in the 3-position are obtained as the main product. With the help of extensive experiments on the functionalization of the 4-position, it was also shown that the substitution of the nucleophilic cycloallen intermediates, during the PDDA reaction, is generally possible by the addition of N-halogen succinimides. Considering the low yields, these intermolecular interception reactions, however, have no preparative utility for the total syntheses of lignans. With the aim of optimizing the general photochemical reaction conditions, the triplet-sensitized PDDA reaction was presented for the first time. The use of xanthone as a sensitizer enabled the use of more efficient UVA light sources, minimizing the risk of photodecomposition due to overirradiation. Compared to direct excitation with UVB radiation, yields were significantly increased with indirect excitation by a photocatalyst. The basic findings and the developed synthesis strategies of this work, may contribute to the future development of new pharmacologically interesting lignans. (1) So far, only the semisynthetic preparation of noralashinol C starting from hydroxymatairesinol is is known from the literature. KW - Totalsynthese KW - Arylnaphthalen-Lignane KW - Photo-Dehydro-Diels-Alder-Reaktion KW - Arylnaphthalene lignans KW - Photo-Dehydro-Diels-Alder reaction KW - total synthesis Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-593065 ER - TY - GEN A1 - Dettmann, Sophie A1 - Huittinen, Nina Maria A1 - Jahn, Nicolas A1 - Kretzschmar, Jerome A1 - Kumke, Michael A1 - Kutyma, Tamara A1 - Lohmann, Janik A1 - Reich, Tobias A1 - Schmeide, Katja A1 - Azzam, Salim Shams Aldin A1 - Spittler, Leon A1 - Stietz, Janina T1 - Influence of gluconate on the retention of Eu(III), Am(III), Th(IV), Pu(IV), and U(VI) by C-S-H (C/S = 0.8) T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The retention of actinides in different oxidation states (An(X), X = III, IV, VI) by a calcium-silicate-hydrate (C-S-H) phase with a Ca/Si (C/S) ratio of 0.8 was investigated in the presence of gluconate (GLU). The actinides considered were Am(III), Th(IV), Pu(IV), and U(VI). Eu(III) was investigated as chemical analogue for Am(III) and Cm(III). In addition to the ternary systems An(X)/GLU/C-S-H, also binary systems An(X)/C-S-H, GLU/C-S-H, and An(X)/GLU were studied. Complementary analytical techniques were applied to address the different specific aspects of the binary and ternary systems. Time-resolved laser-induced luminescence spectroscopy (TRLFS) was applied in combination with parallel factor analysis (PARAFAC) to identify retained species and to monitor species-selective sorption kinetics. ¹³C and ²⁹Si magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy and X-ray photoelectron spectroscopy (XPS) were applied to determine the bulk structure and the composition of the C-S-H surface, respectively, in the absence and presence of GLU. The interaction of Th(IV) with GLU in different electrolytes was studied by capillary electrophoresis-inductively coupled plasma mass spectrometry (CE-ICP-MS). The influence of GLU on An(X) retention was investigated for a large concentration range up to 10⁻² M. The results showed that GLU had little to no effect on the overall An(X) retention by C-S-H with C/S of 0.8, regardless of the oxidation state of the actinides. For Eu(III), the TRLFS investigations additionally implied the formation of a Eu(III)-bearing precipitate with dissolved constituents of the C-S-H phase, which becomes structurally altered by the presence of GLU. For U(VI) sorption on the C-S-H phase, only a small influence of GLU could be established in the luminescence spectroscopic investigations, and no precipitation of U(VI)-containing secondary phases could be identified. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1318 KW - actinide, organic ligand, sorption, cementitious material, concrete, luminescence KW - organic ligand KW - sorption KW - cementitious material KW - concrete KW - luminescence Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-588455 SN - 1866-8372 IS - 1318 ER - TY - JOUR A1 - Dettmann, Sophie A1 - Huittinen, Nina Maria A1 - Nicolas, Jahn A1 - Kretzschmar, Jerome A1 - Kumke, Michael A1 - Kutyma, Tamara A1 - Lohmann, Janik A1 - Reich, Tobias A1 - Schmeide, Katja A1 - Azzam, Salim Shams Aldin A1 - Spittler, Leon A1 - Stietz, Janina T1 - Influence of gluconate on the retention of Eu(III), Am(III), Th(IV), Pu(IV), and U(VI) by C-S-H (C/S = 0.8) JF - Frontiers in Nuclear Engineering N2 - The retention of actinides in different oxidation states (An(X), X = III, IV, VI) by a calcium-silicate-hydrate (C-S-H) phase with a Ca/Si (C/S) ratio of 0.8 was investigated in the presence of gluconate (GLU). The actinides considered were Am(III), Th(IV), Pu(IV), and U(VI). Eu(III) was investigated as chemical analogue for Am(III) and Cm(III). In addition to the ternary systems An(X)/GLU/C-S-H, also binary systems An(X)/C-S-H, GLU/C-S-H, and An(X)/GLU were studied. Complementary analytical techniques were applied to address the different specific aspects of the binary and ternary systems. Time-resolved laser-induced luminescence spectroscopy (TRLFS) was applied in combination with parallel factor analysis (PARAFAC) to identify retained species and to monitor species-selective sorption kinetics. ¹³C and ²⁹Si magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy and X-ray photoelectron spectroscopy (XPS) were applied to determine the bulk structure and the composition of the C-S-H surface, respectively, in the absence and presence of GLU. The interaction of Th(IV) with GLU in different electrolytes was studied by capillary electrophoresis-inductively coupled plasma mass spectrometry (CE-ICP-MS). The influence of GLU on An(X) retention was investigated for a large concentration range up to 10⁻² M. The results showed that GLU had little to no effect on the overall An(X) retention by C-S-H with C/S of 0.8, regardless of the oxidation state of the actinides. For Eu(III), the TRLFS investigations additionally implied the formation of a Eu(III)-bearing precipitate with dissolved constituents of the C-S-H phase, which becomes structurally altered by the presence of GLU. For U(VI) sorption on the C-S-H phase, only a small influence of GLU could be established in the luminescence spectroscopic investigations, and no precipitation of U(VI)-containing secondary phases could be identified. KW - actinide KW - organic ligand KW - sorption KW - cementitious material KW - concrete KW - luminescence Y1 - 2023 U6 - https://doi.org/10.3389/fnuen.2023.1124856 SN - 2813-3412 VL - 2 PB - Frontiers Media CY - Lausanne ER - TY - THES A1 - Henschel, Cristiane T1 - Thermoresponsive polymers with co-nonsolvency behavior T1 - Thermoresponsive Polymere mit "Co-Nonsolvency" Verhalten N2 - Despite the popularity of thermoresponsive polymers, much is still unknown about their behavior, how it is triggered, and what factors influence it, hindering the full exploitation of their potential. One particularly puzzling phenomenon is called co-nonsolvency, in which a polymer is soluble in two individual solvents, but counter-intuitively becomes insoluble in mixtures of both. Despite the innumerous potential applications of such systems, including actuators, viscosity regulators and as carrier structures, this field has not yet been extensively studied apart from the classical example of poly(N isopropyl acrylamide) (PNIPAM) in mixtures of water and methanol. Therefore, this thesis focuses on evaluating how changes in the chemical structure of the polymers impact the thermoresponsive, aggregation and co-nonsolvency behaviors of both homopolymers and amphiphilic block copolymers. Within this scope, both the synthesis of the polymers and their characterization in solution is investigated. Homopolymers were synthesized by conventional free radical polymerization, whereas block copolymers were synthesized by consecutive reversible addition fragmentation chain transfer (RAFT) polymerizations. The synthesis of the monomers N isopropyl methacrylamide (NIPMAM) and N vinyl isobutyramide (NVIBAM), as well as a few chain transfer agents is also covered. Through turbidimetry measurements, the thermoresponsive and co-nonsolvency behavior of PNIPMAM and PNVIBAM homopolymers is then compared to the well-known PNIPAM, in aqueous solutions with 9 different organic co-solvents. Additionally, the effects of end-groups, molar mass, and concentration are investigated. Despite the similarity of their chemical structures, the 3 homopolymers show significant differences in transition temperatures and some divergences in their co-nonsolvency behavior. More complex systems are also evaluated, namely amphiphilic di- and triblock copolymers of PNIPAM and PNIPMAM with polystyrene and poly(methyl methacrylate) hydrophobic blocks. Dynamic light scattering is used to evaluate their aggregation behavior in aqueous and mixed aqueous solutions, and how it is affected by the chemical structure of the blocks, the chain architecture, presence of cosolvents and polymer concentration. The results obtained shed light into the thermoresponsive, co-nonsolvency and aggregation behavior of these polymers in solution, providing valuable information for the design of systems with a desired aggregation behavior, and that generate targeted responses to temperature and solvent mixture changes. N2 - Trotz der Popularität thermoresponsiver Polymere ist noch vieles über ihr Verhalten, sowie dessen Auslöser und Einflüsse darauf unbekannt, was die volle Nutzung ihres Potenzials behindert. Ein besonders ungewöhnliches Phänomen ist die so genannte Co-Nonsolvency, bei der ein Polymer in zwei reinen Lösungsmitteln löslich ist, aber in Mischungen aus beiden unlöslich wird. Trotz der zahlreichen potenziellen Anwendungen solcher Systeme, wie z.B. Aktuatoren, Viskositätsregulatoren und als Transportmedien, ist dieses Feld, abgesehen vom klassischen Beispiel von Poly(N isopropylacrylamid) (PNIPAM) in Mischungen aus Wasser und Methanol, bisher nicht umfassend untersucht worden. Diese Arbeit untersucht daher, welche Auswirkungen die chemische Struktur der Polymere auf das thermoresponsive, Aggregations- und Co-Nonsolvency Verhalten sowohl von Homopolymeren als auch von amphiphilen Blockcopolymeren hat. Dazu wurden sowohl die Synthese der Polymere als auch deren Verhalten in Lösung untersucht. Die Homopolymere wurden durch konventionelle radikalische Polymerisation hergestellt, wogegen die Blockcopolymere durch konsekutive Reversible Addition Fragmentation Chain Transfer Polymerisationen (RAFT) synthetisiert wurden. Die Synthese der Monomere N-Isopropylmethacrylamid (NIPMAM) und N Vinylisobutyramid (NVIBAM) sowie einiger Kettenüberträger wird ebenfalls beschrieben. Mittels Trübungs-Messungen wird das thermoresponsive und Co-Nonsolvency Verhalten von PNIPMAM- und PNVIBAM-Homopolymeren mit dem bekannten PNIPAM in wässrigen Lösungen mit 9 verschiedenen organischen Co-Lösungsmitteln verglichen. Außerdem werden die Auswirkungen der Endgruppen, der Molmasse und der Konzentration der Polymere diskutiert. Trotz der Ähnlichkeit ihrer chemischen Strukturen zeigen die drei Homopolymere signifikante Unterschiede bei den Übergangstemperaturen und einige Divergenzen in ihrem Co-Nonsolvency Verhalten. Es wurden auch komplexere Systeme untersucht, nämlich amphiphile Di- und Triblock-Copolymere von PNIPAM und PNIPMAM mit hydrophoben Blöcken aus Polystyrol und Polymethylmethacrylat. Mittels dynamischer Lichtstreuung wird ihr Aggregationsverhalten in wässrigen und gemischten wässrigen Lösungen bewertet und untersucht, wie es von der chemischen Struktur der Blöcke, der Kettenarchitektur, den Co-Lösungsmitteln und der Polymerkonzentration beeinflusst wird. Die Ergebnisse dokumentieren das thermoresponsive, Co-Nonsolvency und Aggregationsverhalten dieser Polymere in Lösung und liefern wertvolle Informationen für die Entwicklung von Systemen mit einem gewünschten Aggregationsverhalten, die gezielt auf Temperatur- und Lösungsmittelgemischänderungen reagieren. KW - thermoresponsive polymer KW - co-nonsolvency KW - amphiphilic block copolymer KW - poly(N-isopropyl acrylamide) KW - poly(N-isopropyl methacrylamide) KW - poly(N-vinyl isobutyramide) KW - lower critical solution temperature KW - phase transition KW - amphiphile Blockcopolymere KW - Co-Nonsolvency KW - untere kritische Lösungstemperatur KW - Phasenübergang KW - Poly(N-Isopropylacrylamid) KW - Poly(N-Isopropylmethacrylamid) KW - Poly(N-Vinylisobutyramid) KW - thermoresponsive Polymere Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-577161 ER - TY - THES A1 - Esen, Cansu T1 - Carbon nitride incorporation in polymer networks T1 - Inkorporation von Kohlenstoffnitrid in Polymernetzwerke BT - light-driven integration and utilization of graphitic carbon nitride into macroscale polymeric networks N2 - The urge of light utilization in fabrication of materials is as encouraging as challenging. Steadily increasing energy consumption in accordance with rapid population growth, is requiring a corresponding solution within the same rate of occurrence speed. Therefore, creating, designing and manufacturing materials that can interact with light and in further be applicable as well as disposable in photo-based applications are very much under attention of researchers. In the era of sustainability for renewable energy systems, semiconductor-based photoactive materials have received great attention not only based on solar and/or hydrocarbon fuels generation from solar energy, but also successful stimulation of photocatalytic reactions such as water splitting, pollutant degradation and organic molecule synthesisThe turning point had been reached for water splitting with an electrochemical cell consisting of TiO2-Pt electrode illuminated by UV light as energy source rather than an external voltage, that successfully pursued water photolysis by Fujishima and Honda in 1972. Ever since, there has been a great deal of interest in research of semiconductors (e.g. metal oxide, metal-free organic, noble-metal complex) exhibiting effective band gap for photochemical reactions. In the case of environmental friendliness, toxicity of metal-based semiconductors brings some restrictions in possible applications. Regarding this, very robust and ‘earth-abundant’ organic semiconductor, graphitic carbon nitride has been synthesized and successfully applied in photoinduced applications as novel photocatalyst. Properties such as suitable band gap, low charge carrier recombination and feasibility for scaling up, pave the way of advance combination with other catalysts to gather higher photoactivity based on compatible heterojunction. This dissertation aims to demonstrate a series of combinations between organic semiconductor g-CN and polymer materials that are forged through photochemistry, either in synthesis or in application. Fabrication and design processes as well as applications performed in accordance to the scope of thesis will be elucidated in detail. In addition to UV light, more attention is placed on visible light as energy source with a vision of more sustainability and better scalability in creation of novel materials and solar energy based applications. N2 - Die Nutzung von Licht bei der Herstellung von Materialien ist ebenso vielversprechend wie herausfordernd. Der stetig steigende Energieverbrauch in Kombination mit dem rasanten Bevölkerungswachstum erfordert Lösungen in der entsprechenden Geschwindigkeit. Daher stehen Materialien, die mit Licht interagieren können und darüber hinaus in fotobasierten Anwendungen einsetzbar sind, im Mittelpunkt des Interesses der Forscher. In der Ära der Nachhaltigkeit und erneuerbarer Energiesysteme haben halbleiterbasierte photoaktive Materialien nicht nur aufgrund der Erzeugung von Solarenergie oder der Herstellung von Brennstoffen aus Sonnenenergie große Aufmerksamkeit erhalten, sondern auch aufgrund des erfolgreichen Einsatzes in photokatalytischen Reaktionen wie zum Beispiel der Wasserspaltung, des Schadstoffabbaus und der Synthese organischer Moleküle. Die Wasserspaltung mit einer elektrochemischen Zelle führte hier zu einem Wendepunkt in der Forschung. Die Zelle bestand aus einer TiO2-Pt-Elektrode, welche mit UV-Licht als Energiequelle anstatt einer sonst üblichen externen Spannung betrieben wurde. 1972 führten Fujishima und Honda somit erfolgreich die Photolyse von Wasser durch. Seitdem besteht ein großes Interesse an der Erforschung von Halbleitern (z. B. Metalloxide, metallfreie organische Stoffe, Edelmetallkomplexe), die eine effektive Bandlücke für photochemische Reaktionen aufweisen. Was jedoch die Umweltfreundlichkeit anbelangt, so bringt die Toxizität von Halbleitern auf Metallbasis einige Einschränkungen mit sich. Um diese Toxizität zu vermeiden wurde der sehr robuste und bezüglich seiner Ausgangsstoffe häufig vorkommende organische Halbleiter Graphitkohlenstoffnitrid synthetisiert und erfolgreich in photoinduzierten Anwendungen als neuartiger Photokatalysator eingesetzt. Eigenschaften wie eine geeignete Bandlücke, geringe Ladungsträgerrekombination und die Möglichkeit der Skalierung ebnen somit den Weg für Kombinationen mit anderen Katalysatoren, um eine höhere Photoaktivität auf der Grundlage einer kompatiblen Heteroverbindung zu erreichen. Diese Dissertation zielt darauf ab, eine Reihe von Kombinationen zwischen dem organischen Halbleitern g-CN und Polymermaterialien zu demonstrieren. Diese werden entweder durch photochemische Reaktionen synthetisiert oder in solchen angewendet. Die Herstellungs- und Designprozesse sowie die Anwendungen, die im Rahmen dieser Arbeit durchgeführt wurden, werden im Detail erläutert. Neben UV-Licht wird auch dem sichtbarem Licht als Energiequelle mehr Aufmerksamkeit gewidmet. Durch die Verwendung von sichtbaren Licht können die Materialen in solarenergetischen Anwendungen genutzt werden und die Nachhaltigkeit und Skalierbarkeit der Materialien wird verbessert. KW - polymer chemistry KW - Polymerchemie KW - carbon nitride KW - Kohlenstoffnitriden KW - heterogeneous photocatalysis KW - heterogene Photokatalyse Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-576253 ER - TY - THES A1 - Hwang, Jinyeon T1 - Influence of the pore structure and chemical properties of all-carbon composites on their electrochemical properties in lithium-ion capacitors T1 - Einfluss der Porenstruktur und chemischen Eigenschaften von All-Carbon-Kompositen auf ihre elektrochemischen Eigenschaften in Lithium-Ionen-Kondensatoren N2 - Lithium-ion capacitors (LICs) are promising energy storage devices by asymmetrically combining anode with a high energy density close to lithium-ion batteries and cathode with a high power density and long-term stability close to supercapacitors. For the further improvement of LICs, the development of electrode materials with hierarchical porosity, nitrogen-rich lithiophilic sites, and good electrical conductivity is essential. Nitrogen-rich all-carbon composite hybrids are suitable for these conditions along with high stability and tunability, resulting in a breakthrough to achieve the high performance of LICs. In this thesis, two different all-carbon composites are suggested to unveil how the pore structure of lithiophilic composites influences the properties of LICs. Firstly, the composite with 0-dimensional zinc-templated carbon (ZTC) and hexaazatriphenylene-hexacarbonitrile (HAT) is examined how the pore structure is connected to Li-ion storage property as LIC electrode. As the pore structure of HAT/ZTC composite is easily tunable depending on the synthetic factor and ratio of each component, the results will allow deeper insights into Li-ion dynamics in different porosity, and low-cost synthesis by optimization of the HAT:ZTC ratio. Secondly, the composite with 1-dimensional nanoporous carbon fiber (ACF) and cost-effective melamine is proposed as a promising all-carbon hybrid for large-scale application. Since ACF has ultra-micropores, the numerical structure-property relationships will be calculated out not only from total pore volume but more specifically from ultra-micropore volume. From these results above, it would be possible to understand how hybrid all-carbon composites interact with lithium ions in nanoscale as well as how structural properties affect the energy storage performance. Based on this understanding derived from the simple materials modeling, it will provide a clue to design the practical hybrid materials for efficient electrodes in LICs. N2 - Lithium-Ionen-Kondensatoren (LICs) sind vielversprechende Energiespeicher, indem sie eine Anode mit einer vergleichsweise hohen Energiedichte wie die von Lithium-Ionen-Batterien und eine Kathode mit hoher Leistungsdichte und Langzeitstabilität wie die Superkondensatoren asymmetrisch kombinieren. Für die weitere Verbesserung von LICs ist die Entwicklung von Elektrodenmaterialien mit hierarchischer Porosität, stickstoffreichen lithiophilen Zentren und guter elektrischer Leitfähigkeit unerlässlich. Stickstoffreiche Vollcarbon-Verbundwerkstoffe sind für diese Bedingungen zusammen mit hoher Stabilität geeignet, was zu einem Durchbruch bei der Erzielung der hohen Leistung von LICs führt. In dieser Dissertation werden zwei verschiedene All-Carbon-Komposite vorgeschlagen, um aufzudecken, wie die Porenstruktur von lithiophilen Kompositen die Eigenschaften von LICs beeinflusst. Zunächst wird der Verbund mit 0-dimensionalem Zink-Templat-Kohlenstoff (ZTC) und Hexaazatriphenylen-Hexacarbonitril (HAT) untersucht, wie die Porenstruktur mit der Li-Ionen-Speichereigenschaft als LIC-Elektrode verbunden ist. Da die Porenstruktur von HAT/ZTC-Kompositen je nach Synthesefaktor und Verhältnis jeder Komponente leicht einstellbar ist, werden die Ergebnisse tiefere Einblicke in die Li-Ionen-Dynamik verschiedener Porositäten und eine kostengünstige Synthese durch Optimierung des Verhältnisses ermöglichen. Zweitens wird der Verbund mit 1-dimensionaler nanoporöser Kohlefaser (ACF) und kostengünstigem Melamin als vielversprechender All-Carbon-Hybrid für die großtechnische Anwendung vorgeschlagen. Da ACF Ultra-Mikroporen aufweist, werden die Struktur-Eigenschafts-Beziehungen nicht nur aus der Gesamtporen, sondern insbesondere aus Ultra-Mikroporen berechnet. Aus den obigen Ergebnissen wäre es möglich zu verstehen, wie hybride All-Carbon-Komposite mit Lithiumionen im Nanomaßstab interagieren und wie sich strukturelle Eigenschaften auf die Energiespeicherleistung auswirken. Basierend auf diesem aus der einfachen Materialmodellierung abgeleiteten Verständnis wird es einen Anhaltspunkt für das Design praktischer Hybridmaterialien für effiziente Elektroden in LICs liefern. KW - lithium ion capacitors KW - hierarchical pore structure KW - lithiophilicity KW - all-carbon composites KW - All-Carbon-Kompositen KW - hierarchische Porenstruktur KW - Lithiophilizität KW - Lithium-Ionen-Kondensatoren Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-591683 ER - TY - THES A1 - Frank, Bradley D. T1 - Complex and adaptive soft colloids BT - templated from reconfigurable jamus emulsions Y1 - 2023 ER - TY - THES A1 - Strauß, Volker T1 - Laser-induced carbonization - from fundamentals to applications N2 - Fabricating electronic devices from natural, renewable resources has been a common goal in engineering and materials science for many years. In this regard, carbon is of special significance due to its biological compatibility. In the laboratory, carbonized materials and their composites have been proven as promising solutions for a range of future applications in electronics, optoelectronics, or catalytic systems. On the industrial scale, however, their application is inhibited by tedious and expensive preparation processes and a lack of control over the processing and material parameters. Therefore, we are exploring new concepts for the direct utilization of functional carbonized materials in electronic applications. In particular, laser-induced carbonization (carbon laser-patterning (CLaP)) is emerging as a new tool for the precise and selective synthesis of functional carbon-based materials for flexible on-chip applications. We developed an integrated approach for on-the-spot laser-induced synthesis of flexible, carbonized films with specific functionalities. To this end, we design versatile precursor inks made from naturally abundant starting compounds and reactants to cast films which are carbonized with an infrared laser to obtain functional patterns of conductive porous carbon networks. In our studies we obtained deep mechanistic insights into the formation process and the microstructure of laser-patterned carbons (LP-C). We shed light on the kinetic reaction mechanism based on the interplay between the precursor properties and the reaction conditions. Furthermore, we investigated the use of porogens, additives, and reactants to provide a toolbox for the chemical and physical fine-tuning of the electronic and surface properties and the targeted integration of functional sites into the carbon network. Based on this knowledge, we developed prototype resistive chemical and mechanical sensors. In further studies, we show the applicability of LP-C as electrode materials in electrocatalytic and charge-storage applications. To put our findings into a common perspective, our results are embedded into the context of general carbonization strategies, fundamentals of laser-induced materials processing, and a broad literature review on state-of-the-art laser-carbonization, in the general part. N2 - Die Herstellung elektronischer Geräte aus natürlichen, erneuerbaren Ressourcen ist seit vielen Jahren ein gemeinsames Ziel in den Ingenieurs- und Materialwissenschaften. Kohlenstoff kommt dabei aufgrund seiner biologischen Verträglichkeit eine besondere Bedeutung zu. Im Labor haben sich karbonisierte Materialien und ihre Verbundwerkstoffe als vielversprechende Lösungen für eine Reihe zukünftiger Anwendungen in der Elektronik, Optoelektronik oder katalytischen Systemen erwiesen. Im industriellen Maßstab wird ihre Anwendung jedoch durch langwierige und teure Herstellungsverfahren und mangelnde Kontrolle über die Verarbeitungs- und Materialparameter gehemmt. Daher erforschen wir neue Konzepte für die direkte Nutzung funktionaler karbonisierter Materialien in elektronischen Anwendungen. Insbesondere die laserinduzierte Karbonisierung / Kohlenstoff-Laserstrukturierung (KoLaSt) entwickelt sich zu einem neuen Werkzeug für die präzise und selektive Synthese von funktionellen Materialien auf Kohlenstoffbasis für flexible On-Chip-Anwendungen. Wir haben einen integrierten Ansatz für die direkte laserinduzierte Synthese von flexiblen, karbonisierten Filmen mit spezifischen Funktionalitäten entwickelt. Zu diesem Zweck haben wir vielseitige Vorläufertinten aus natürlich vorkommenden organischen Ausgangsstoffen und Reaktanten entwickelt, um Filme aufzutragen, die mit einem Infrarotlaser karbonisiert werden um dadurch funktionelle Muster aus leitfähigen porösen Kohlenstoffnetzwerken zu erhalten. In unseren Studien haben wir tiefe mechanistische Einblicke in den Bildungsprozess und die Mikrostruktur von laserstrukturierten Kohlenstoffen (LP-C) erhalten. Wir beleuchten den kinetischen Reaktionsmechanismus basierend auf dem Zusammenspiel zwischen den Vorläufereigenschaften und den Reaktionsbedingungen. Darüber hinaus untersuchen wir die Verwendung von Porogenen, Additiven und Reaktanten, um eine Toolbox für die chemische und physikalische Feineinstellung der elektronischen und Oberflächeneigenschaften und die gezielte Integration von funktionellen Einheiten in das Kohlenstoffnetzwerk bereitzustellen. Basierend auf diesem Wissen haben wir Prototypen resistiver chemischer und mechanischer Sensoren entwickelt. In weiteren Studien zeigen wir die Anwendbarkeit von LP-C als Elektrodenmaterialien in elektrokatalytischen und Ladungsspeicheranwendungen. Um unsere Erkenntnisse in eine allgemeine Perspektive zu bringen, betten wir unsere Ergebnisse im allgemeinen Teil in den Kontext bekannter Karbonisierungsstrategien, Grundlagen der laserinduzierten Materialbearbeitung und einer breiten Literaturübersicht zum Stand der Technik der Laserkarbonisierung ein. KW - Laser-Carbonization KW - Carbonization KW - Chemical Sensors KW - Electronic materials KW - Laserkarbonisierung KW - Karbonisierung KW - chemische Sensoren KW - elektronische Materialien Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-591995 ER - TY - THES A1 - Fortes Martín, Rebeca T1 - Water-in-oil microemulsions as soft-templates to mediate nanoparticle interfacial assembly into hybrid nanostructures T1 - Wasser-in-Öl Mikroemulsionen als Soft-Templat für die Grenzfläche-Anordnung von Nanopartikeln in hybride Nanostrukturen T1 - Microemulsiones de aceite-en-agua como estructuras templadas blandas para el ensamblaje de nanoparticulas en su interfase dando nanoestructuras híbridas N2 - Hybrid nanomaterials offer the combination of individual properties of different types of nanoparticles. Some strategies for the development of new nanostructures in larger scale rely on the self-assembly of nanoparticles as a bottom-up approach. The use of templates provides ordered assemblies in defined patterns. In a typical soft-template, nanoparticles and other surface-active agents are incorporated into non-miscible liquids. The resulting self-organized dispersions will mediate nanoparticle interactions to control the subsequent self-assembly. Especially interactions between nanoparticles of very different dispersibility and functionality can be directed at a liquid-liquid interface. In this project, water-in-oil microemulsions were formulated from quasi-ternary mixtures with Aerosol-OT as surfactant. Oleyl-capped superparamagnetic iron oxide and/or silver nanoparticles were incorporated in the continuous organic phase, while polyethyleneimine-stabilized gold nanoparticles were confined in the dispersed water droplets. Each type of nanoparticle can modulate the surfactant film and the inter-droplet interactions in diverse ways, and their combination causes synergistic effects. Interfacial assemblies of nanoparticles resulted after phase-separation. On one hand, from a biphasic Winsor type II system at low surfactant concentration, drop-casting of the upper phase afforded thin films of ordered nanoparticles in filament-like networks. Detailed characterization proved that this templated assembly over a surface is based on the controlled clustering of nanoparticles and the elongation of the microemulsion droplets. This process offers versatility to use different nanoparticle compositions by keeping the surface functionalization, in different solvents and over different surfaces. On the other hand, a magnetic heterocoagulate was formed at higher surfactant concentration, whose phase-transfer from oleic acid to water was possible with another auxiliary surfactant in ethanol-water mixture. When the original components were initially mixed under heating, defined oil-in-water, magnetic-responsive nanostructures were obtained, consisting on water-dispersible nanoparticle domains embedded by a matrix-shell of oil-dispersible nanoparticles. Herein, two different approaches were demonstrated to form diverse hybrid nanostructures from reverse microemulsions as self-organized dispersions of the same components. This shows that microemulsions are versatile soft-templates not only for the synthesis of nanoparticles, but also for their self-assembly, which suggest new approaches towards the production of new sophisticated nanomaterials in larger scale. N2 - Hybride Nanomaterialen ermöglichen die Kombination von individuellen Eigenschaften jeder Art von Nanopartikeln. Einige Strategien für die Herstellung neuer großskaliger Nanostrukturen beruhen auf der Selbstassemblierung von Nanopartikeln über einen Bottom-up-Ansatz. Die Nutzung von Templatstrukturen ermöglicht Anordnungen in definierten Mustern. In einem typischen Soft-Templat werden Nanopartikel und andere oberflächenaktive Wirkstoffe in nicht-mischbare Flüssigkeiten eingebracht. Die resultierenden selbst-organisierten Dispersionen beeinflussen die Nanopartikel Interaktionen und kontrollieren die nachfolgende Selbstassemblierung. Insbesondere Interaktionen zwischen Nanopartikeln mit sehr unterschiedlicher Dispergierbarkeit und Funktionalität können Interaktionen an einer Flüssig-Flüssig Grenzfläche gerichtet werden. In diesem Forschungsprojekt wurden Wasser-in-Öl Mikroemulsionen aus quasi-ternären Mischungen mit Aerosol-OT als Tensid hergestellt. Oleyl-beschichtete superparamagnetische Eisenoxid und/oder Silber Nanopartikel wurden in der kontinuierlichen Ölphase eingebracht, während die Polyethyleneimin-stabilisierten Gold Nanopartikel in feinverteilte Wassertröpfchen inkorporiert wurden. Jede Sorte von Nanopartikeln kann den Tensidfilm und die Tröpfchen-Interaktionen auf verschiedene Weise beeinflussen, und seine Kombination führt dabei zu synergetischen Effekten. Die Anordnung von Nanopartikeln an der Grenzfläche basiert auf der Phasentrennung. Auf der einen Seite, bildeten sich aus einem zweiphasigen Winsor II System mit niedrigen Tensid Konzentrationen durch Evaporation der oberen Phase dünne Schichten aus geordneten Nanopartikeln in Form von Filament-Netzen aus. Eine detaillierte Charakterisierung zeigte, dass die Filament-artige Strukturierung auf ein kontrolliertes Nanopartikeln-Clustering und auf die Ausdehnung der Mikroemulsions-Tröpfchen zurückzuführen ist. Dieser Prozess eröffnet flexible Einsatzmöglichkeiten für unterschiedliche Nanopartikel Kompositionen, indem die Oberflächenfunktionalisierung in unterschiedlichen Lösungsmitteln erhalten bleibt, und auch für verschiedenen Lösungsmitteln und über verschiedene Flächen. Auf der anderen Seite wurde ein magnetisches Heterokoagulat in höheren Tensid Konzentration hergestellt, dessen Phasentransfer von Ölsäure in Wasser mit einem anderen zusätzlichen Tensid in einer Ethanol-Wasser Mischung ermöglicht wurde. In Abhängigkeit von der Ausgangstemperatur der initialen Komponenten konnten definierte magnetisch-stimulierbare Öl-in-Wasser Nanostrukturen erhaltet werden. Dabei gelang es Wasser-dispergierbare Nanopartikelkompartimente in eine Matrix-Hülle aus Öl-dispergierbaren Nanopartikeln einzubetten. In dieser Arbeit wurden zwei verschiedene Wege aufgezeigt, um hybride Nanostrukturen aus inversen Mikroemulsionen selbst-organisiert herzustellen. Dies belegt, dass Mikroemulsions-Template nicht nur für die Nanopartikel Synthese geeignet sind, sondern auch für die Herstellung filamentartiger, selbstorganisierter Systeme. Es eröffnen sich hiermit neue Zugänge für die selbstorganisierte Strukturierung von Nanopartikeln auf der Mikrometerskala. N2 - Los nanomateriales híbridos ofrecen la combinación de propiedades individuales de diferentes tipos de nanopartículas. Algunas estrategias para el desarrollo de nuevas nanoestructuras en mayor escala se basan en el auto-ensamblaje (self-assembly) de nanopartículas, como una estrategia “de abajo hacia arriba” (bottom-up). El uso de estructuras de plantilla (templates) proporciona ensamblajes ordenados de formas definidas. En una plantilla blanda típica, las nanopartículas y otros agentes de actividad superficial se incorporan en líquidos no miscibles. Esto da lugar a dispersiones auto-organizadas que mediarán las interacciones entre las nanopartículas, para controlar su auto-ensamblaje resultante. Especialmente las interacciones entre nanopartículas de dispersibilidad y funcionalidades muy diferentes pueden ser redirigidas a una interfase líquido-líquido. En este proyecto se formularon microemulsiones de agua-en-aceite a partir de mezclas cuasi-ternarias con Aerosol-OT (docusato de sodio) como tensioactivo. Las nanopartículas cubiertas de ligandos oleicos, de óxido de hierro superparamagnéticas o de plata, se incorporaron en la fase orgánica continua, mientras que las nanopartículas de oro estabilizadas por polietilenimina fueron confinadas en las gotículas de agua dispersas. Cada tipo de nanopartícula puede modular de fomas muy diversas la capa de tensioactivo y las interacciones entre gotículas, y además su combinación resulta en efectos sinérgicos. Los ensamblajes interfase de nanopartículas se obtuvieron bajo procesos de separación entre fases. Por un lado, a partir de un sistema bifásico de Winsor del tipo II con baja concentración del tensioactivo, la deposición y evaporación de una gota sobre una superficie (drop-casting) de la fase superior proporcionó películas finas de nanopartículas ordenadas como redes de filamentos. Su caracterización detallada probó que este ensamblaje por plantilla sobre una superficie se basa en un agrupamiento (clustering) controlado entre nanopartículas y en la elongación de las gotículas de microemulsiones. Este proceso ofrece versatilidad para usar diferentes composiciones de nanopartículas siempre que su funcionalidad en su superficie se mantenga, además de poder usar diferentes disolventes y sobre diferentes superficies. Por otro lado, un heterocoagulado magnético se formó sobre concentraciones más altas del tensioactivo, y su transferencia de fase desde ácido oleico a agua fue posible usando otro tensioactivo auxiliar en una mezcla de agua y etanol. Cuando los componentes iniciales fueron mezclados al principio bajo calentamiento, se obtuvieron nanoestucturas definidas de aceite-en-agua que responden a un imán, las cuales consisten de dominios de nanopartículas dispersibles en agua que se rodean por un embalaje (matrix-shell) de nanopartículas dispersibles en fase oleosa. De este modo, se demostraron dos propuestas para formar diversos tipos de nanoestructuras híbridas a partir de microemulsiones inversas como dispersiones auto-organizadas de unos mismos componentes. Esto demuestra que las microemulsiones constituyen estructuras de plantilla blandas no sólo para la síntesis de nanopartículas, sino también para su auto-ensamblaje, lo que sugiere novedosas estrategias para la producción de nuevos nanomateriales sofisticados en mayor escala. KW - microemulsions KW - nanoparticles KW - surfactants KW - Colloid Chemistry KW - soft-templates KW - nanostructures KW - nanoparticle assembly KW - hybrid nanostructures KW - Kolloidchemie KW - hybride Nanostrukturen KW - Mikroemulsionen KW - Nanopartikeln-Anordnung KW - Nanopartikeln KW - Nanostrukturen KW - Soft-Templaten KW - Tenside KW - Química de Coloides KW - nanoestructuras híbridas KW - microemulsiones KW - ensamblaje de nanopartículas KW - nanopartículas KW - nanoestructuras KW - estructuras templadas blandas KW - tensioactivos Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-571801 ER - TY - THES A1 - Galushchinskiy, Alexey T1 - Carbon nitride: a flexible platform for net-oxidative and net-neutral photocatalysis BT - Kohlenstoffnitrid: Eine flexible Plattform für netzoxidative und netzneutrale Photokatalyse N2 - Solar photocatalysis is the one of leading concepts of research in the current paradigm of sustainable chemical industry. For actual practical implementation of sunlight-driven catalytic processes in organic synthesis, a cheap, efficient, versatile and robust heterogeneous catalyst is necessary. Carbon nitrides are a class of organic semiconductors who are known to fulfill these requirements. First, current state of solar photocatalysis in economy, industry and lab research is overviewed, outlining EU project funding, prospective synthetic and reforming bulk processes, small scale solar organic chemistry, and existing reactor designs and prototypes, concluding feasibility of the approach. Then, the photocatalytic aerobic cleavage of oximes to corresponding aldehydes and ketones by anionic poly(heptazine imide) carbon nitride is discussed. The reaction provides a feasible method of deprotection and formation of carbonyl compounds from nitrosation products and serves as a convenient model to study chromoselectivity and photophysics of energy transfer in heterogeneous photocatalysis. Afterwards, the ability of mesoporous graphitic carbon nitride to conduct proton-coupled electron transfer was utilized for the direct oxygenation of 1,3-oxazolidin-2-ones to corresponding 1,3-oxazlidine-2,4-diones. This reaction provides an easier access to a key scaffold of diverse types of drugs and agrochemicals. Finally, a series of novel carbon nitrides based on poly(triazine imide) and poly(heptazine imide) structure was synthesized from cyanamide and potassium rhodizonate. These catalysts demonstrated a good performance in a set of photocatalytic benchmark reactions, including aerobic oxidation, dual nickel photoredox catalysis, hydrogen peroxide evolution and chromoselective transformation of organosulfur precursors. Concluding, the scope of carbon nitride utilization for net-oxidative and net-neutral photocatalytic processes was expanded, and a new tunable platform for catalyst synthesis was discovered. N2 - Die solare Photokatalyse ist eines der führenden Forschungskonzepte im aktuellen Paradigma der nachhaltigen chemischen Industrie. Für die praktische Umsetzung von sonnenlichtgetriebenen katalytischen Prozessen in der organischen Synthese ist ein billiger, effizienter, vielseitiger und robuster heterogener Katalysator erforderlich. Kohlenstoffnitride sind eine Klasse von organischen Halbleitern, von denen bekannt ist, dass sie diese Anforderungen erfüllen. Zunächst wird ein Überblick über den aktuellen Stand der solaren Photokatalyse in Wirtschaft, Industrie und Laborforschung gegeben, wobei die Finanzierung von EU-Projekten, künftige Synthese- und Reformierungsprozesse in großen Mengen, organische Solarchemie in kleinem Maßstab sowie bestehende Reaktorkonstruktionen und -prototypen beschrieben und die Durchführbarkeit des Ansatzes erläutert werden. Anschließend wird die photokatalytische aerobe Spaltung von Oximen in die entsprechenden Aldehyde und Ketone durch anionisches Poly(heptazinimid)-Kohlenstoffnitrid diskutiert. Die Reaktion stellt eine praktikable Methode zur Entschützung und Bildung von Carbonylverbindungen aus Nitrosierungsprodukten dar und dient als geeignetes Modell zur Untersuchung der Chromoselektivität und der Photophysik der Energieübertragung in der heterogenen Photokatalyse. Anschließend wurde die Fähigkeit von mesoporösem graphitischem Kohlenstoffnitrid, protonengekoppelten Elektronentransfer zu leiten, für die direkte Oxygenierung von 1,3-Oxazolidin-2-onen zu den entsprechenden 1,3-Oxazlidin-2,4-Dionen genutzt. Diese Reaktion ermöglicht einen leichteren Zugang zu einem wichtigen Gerüst für verschiedene Arten von Medikamenten und Agrochemikalien. Schließlich wurde eine Reihe neuartiger Kohlenstoffnitride auf der Basis von Poly(triazinimid)- und Poly(heptazinimid)-Strukturen aus Cyanamid und Kaliumrhodizonat synthetisiert. Diese Katalysatoren zeigten eine gute Leistung in einer Reihe von photokatalytischen Benchmark-Reaktionen, einschließlich aerober Oxidation, dualer Nickel-Photoredox-Katalyse, Wasserstoffperoxid-Evolution und chromoselektiver Umwandlung von Organoschwefel-Vorläufern. Abschließend wurde der Anwendungsbereich von Kohlenstoffnitrid für netzoxidative und netzneutrale photokatalytische Prozesse erweitert und eine neue abstimmbare Plattform für die Katalysatorsynthese entdeckt. KW - carbon nitrides KW - Kohlenstoffnitriden KW - heterogeneous photocatalysis KW - heterogene Photokatalyse KW - organic synthesis KW - organische Synthese Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-610923 ER - TY - THES A1 - Baryzewska, Agata W. T1 - Reconfigurable Janus emulsions as signal transducers for biosensing applications Y1 - 2023 ER - TY - THES A1 - Chemura, Sitshengisiwe T1 - Optical spectroscopy on lanthanide-modified nanomaterials for performance monitoring T1 - Optische Spektroskopie an Lanthanid-modifizierten Nanomaterialien zur Leistungsüberwachung N2 - Lanthanide based ceria nanomaterials are important practical materials due to their redox properties that are useful in technology and life sciences. This PhD thesis examined various properties and potential for catalytic and bio-applications of Ln3+-doped ceria nanomaterials. Ce1-xGdxO2-y: Eu3+, gadolinium doped ceria (GDC) (0 ≤ x ≤ 0.4) nanoparticles were synthesized by flame spray pyrolysis (FSP) and studied, followed by 15 % CexZr1-xO2-y: Eu3+|YSZ (0 ≤ x ≤ 1) nanocomposites. Furthermore, Ce1-xYb xO2-y (0.004 ≤ x ≤ 0.22) nanoparticles were synthesized by thermal decomposition and characterized. Finally, CeO2-y: Eu3+ nanoparticles were synthesized by a microemulsion method, biofunctionalized and characterized. The studies undertaken presents a novel approach to structurally elucidate ceria-based nanomaterials by way of Eu3+ and Yb3+ spectroscopy and processing the spectroscopic data with the multi-way decomposition method PARAFAC. Data sets of the three variables: excitation wavelength, emission wavelength and time were used to perform the deconvolution of spectra. GDC nanoparticles from FSP are nano-sized and of roughly cubic shape and crystal structure (Fm3̅m). Raman data revealed four vibrational modes exhibited by Gd3+ containing samples whereas CeO2-y: Eu3+ displays only two. The room temperature, time-resolved emission spectra recorded at λexcitation = 464 nm show that Gd3+ doping results in significantly altered emission spectra compared to pure ceria. The PARAFAC analysis for the pure ceria samples reveals two species; a high-symmetry species and a low-symmetry species. The GDC samples yield two low-symmetry spectra in the same experiment. High-resolution emission spectra recorded at 4 K after probing the 5D0-7F0 transition revealed additional variation in the low symmetry Eu3+ sites in pure ceria and GDC. The data of the Gd3+-containing samples indicates that the average charge density around the Eu3+ ions in the lattice is inversely related to Gd3+ and oxygen vacancy concentration. The particle crystallites of the 773 K and 1273 K annealed Yb3+ -ceria nanostructure materials are nano-sized and have a cubic fluorite structure with four Raman vibrational modes. Elemental maps clearly show that cluster formation occurs for 773 K annealed with high Yb3+ ion concentration from 15 mol % in the ceria lattice. These clusters are destroyed with annealing to 1273 K. The emission spectra observed from room temperature and 4 K measurements for the Ce1-xYb xO2-y samples have a manifold that corresponds to the 2F5/2-2F7/2 transition of Yb3+ ions. Some small shifts are observed in the Stark splitting pattern and are induced by the variations of the crystal field influenced by where the Yb3+ ions are located in the crystal lattices in the samples. Upon mixing ceria with high Yb3+ concentrations, the 2F5/2-2F7/2 transition is also observed in the Stark splitting pattern, but the spectra consist of two broad high background dominated peaks. Annealing the nanomaterials at 1273 K for 2 h changes the spectral signature as new peaks emerge. The deconvolution yielded luminescence decay kinetics as well as the accompanying luminescence spectra of three species for each of the low Yb3+ doped ceria samples annealed at 773 K and one species for the 1273 K annealed samples. However, the ceria samples with high Yb3+ concentration annealed at the two temperatures yielded one species with lower decay times as compared to the Yb3+ doped ceria samples after PARAFAC analysis. Through the calcination of the nanocomposites at two high temperatures, the evolution of the emission patterns from specific Eu3+ lattice sites to indicate structural changes for the nanocomposites was followed. The spectroscopy results effectively complemented the data obtained from the conventional techniques. Annealing the samples at 773 K, resulted in amorphous, unordered domains whereas the TLS of the 1273 K nanocomposites reveal two distinct sites, with most red shifted Eu3+ species coming from pure Eu3+ doped ZrO2 on the YSZ support. Finally, for Eu3+ doped ceria, successful transfer from hydrophobic to water phase and subsequent biocompatibility was achieved using ssDNA. PARAFAC analysis for the Eu3+ in nanoparticles dispersed in toluene and water revealed one Eu3+ species, with slightly differing surface properties for the nanoparticles as far as the luminescence kinetics and solvent environments were concerned. Several functionalized nanoparticles conjugated onto origami triangles after hybridization were visualized by atomic force microscopy (AFM). Putting all into consideration, Eu3+ and Yb3+ spectroscopy was used to monitor the structural changes and determining the feasibility of the nanoparticle transfer into water. PARAFAC proves to be a powerful tool to analyze lanthanide spectra in crystalline solid materials and in solutions, which are characterized by numerous Stark transitions and where measurements usually yield a superposition of different emission contributions to any given spectrum. N2 - Ceroxid-Nanomaterialien auf Lanthanidbasis sind aufgrund ihrer Redox-Eigenschaften wichtige praktische Materialien, die in der Technik und den Biowissenschaften von Nutzen sind. In dieser Dissertation wurden verschiedene Eigenschaften und das Potenzial für katalytische und biologische Anwendungen von Ln3+-dotierten Ceroxid-Nanomaterialien untersucht. Ce1-xGdxO2-y:Eu3+, gadoliniumdotierte Ceroxid (GDC) (0.0 ≤ x ≤ 0.4) Nanopartikel wurden durch Flammenspray-Pyrolyse (FSP) synthetisiert und untersucht, gefolgt von 15 % CexZr1-xO2-y:Eu3+|YSZ (0 ≤ x ≤ 1) Nanokompositen. Außerdem wurden Ce1-xYbxO2-y (0.004 ≤ x ≤ 0.22) Nanopartikel durch thermische Zersetzung synthetisiert und charakterisiert. Schließlich wurden CeO2-y:Eu3+-Nanopartikel durch eine Mikroemulsionsmethode synthetisiert, biofunktionalisiert und charakterisiert. In den durchgeführten Studien wird ein neuartiger Ansatz zur Strukturaufklärung von Nanomaterialien auf Ceroxidbasis mittels Eu3+- und Yb3+-Spektroskopie und Verarbeitung der spektroskopischen Daten mit der Zerlegungsmethode PARAFAC vorgestellt. Für die Entfaltung der Spektren wurden Datensätze mit den drei Variablen Anregungswellenlänge, Emissionswellenlänge und Zeit verwendet. GDC-Partikel aus FSP sind Nanometer groß und besitzen eine grob kubische Form und Kristallstruktur (Fm3̅m). Raman-Daten zeigten vier Schwingungsmoden bei Gd3+-haltigen Proben, während CeO2-y:Eu3+ nur zwei aufweist. Die bei Raumtemperatur aufgezeichneten zeitaufgelösten Emissionsspektren bei λAnregung = 464 nm zeigen, dass die Gd3+-Dotierung im Vergleich zu reinem Ceroxid zu deutlich veränderten Emissionsspektren führt. Die PARAFAC-Analyse für die reinen Ceroxidproben zeigt zwei Spezies: eine hochsymmetrische Spezies und eine niedrigsymmetrische Spezies. Die GDC-Proben liefern im selben Experiment zwei niedrigsymmetrische Species. Hochauflösende Emissionsspektren, die bei 4 K nach der Untersuchung des 5D0-7F0-Übergangs aufgezeichnet wurden, ergaben zusätzliche Variationen bei den niedrigsymmetrischen Eu3+-Stellen in reinem Ceroxid und GDC. Die Daten der Gd3+-haltigen Proben deuten darauf hin, dass die durchschnittliche Ladungsdichte um die Eu3+-Ionen im Gitter in umgekehrter Beziehung zur Gd3+- und Sauerstoffleerstellen-Konzentration steht. Die Partikelkristallite der bei 773 K und 1273 K geglühten Yb3+-Ceroxid-Nanostrukturen sind nanoskalig und haben eine kubische Fluoritstruktur mit vier Raman-Schwingungsmoden. Elementverteilungen zeigen deutlich, dass sich bei 773 K, geglüht mit einer hohen Yb3+-Ionenkonzentration ab 15 Mol-% im Ceroxidgitter, Cluster bilden. Diese Cluster werden beim Glühen auf 1273 K zerstört. Die Emissionsspektren, die bei Messungen bei Raumtemperatur und 4 K für die Ce1-xYbxO2-y-Proben beobachtet wurden, weisen vielfältige Banden auf, die dem 2F5/2-2F7/2-Übergang der Yb3+-Ionen entspricht. Es werden einige kleine Verschiebungen im Stark-Aufspaltungsmuster beobachtet, die durch die Variationen des Kristallfeldes verursacht werden, in Abhängigkeit der Positionen der Yb3+-Ionen in den Kristallgittern. Beim Mischen von Ceroxid mit hohen Yb3+-Konzentrationen wird der 2F5/2-2F7/2-Übergang auch im Stark-Aufspaltungsmuster beobachtet, aber die Spektren bestehen aus zwei breiten, vom Hintergrund dominierten Peaks. Das Ausglühen der Nanomaterialien bei 1273 K für 2 Stunden verändert die spektrale Signatur, da neue Emissionsbanden entstehen. Die Entfaltung ergab die Lumineszenz-Abklingkinetik sowie die begleitenden Lumineszenzspektren von drei Spezies für jede der niedrig Yb3+-dotierten Ceroxidproben, die bei 773 K geglüht wurden, und eine Spezies für die bei 1273 K geglühten Proben. Die bei beiden Temperaturen geglühten Ceroxidproben mit hoher Yb3+-Konzentration ergaben jedoch eine Spezies mit geringeren Abklingzeiten als die Yb3+-dotierten Ceroxidproben nach der PARAFAC-Analyse. Durch die Kalzinierung der Nanokomposite bei zwei hohen Temperaturen wurde die Entwicklung der Emissionsmuster von spezifischen Eu3+-Gitterplätzen verfolgt, die auf strukturelle Veränderungen der Nanokomposite hinweisen. Die Ergebnisse der Spektroskopie ergänzten die mit den konventionellen Techniken gewonnenen Daten. Das Ausglühen der Proben bei 773 K führte zu amorphen, ungeordneten Domänen, während die totalen Lumineszenzpektren der Nanokomposite bei 1273 K zwei unterschiedliche Stellen erkennen lassen, wobei die meisten rotverschobenen Eu3+-Spezies von reinem Eu3+-dotiertem ZrO2 auf dem YSZ-Träger stammen. Schließlich wurde für Eu3+-dotiertes Ceroxid ein erfolgreicher Transfer von der hydrophoben in die Wasserphase und eine anschließende Biokompatibilität mit ssDNA erreicht. Die PARAFAC-Analyse für Eu3+ in Nanopartikeln, die in Toluol und Wasser dispergiert wurden, ergab eine Eu3+-Spezies mit leicht unterschiedlichen Oberflächeneigenschaften der Nanopartikel, was die Lumineszenzkinetik und die Lösungsmittelumgebung betraf. Mehrere funktionalisierte Nanopartikel, die nach der Hybridisierung auf Origami-Dreiecken konjugiert waren, wurden mit Hilfe der Rasterkraftmikroskopie (AFM) sichtbar gemacht. Die Eu3+- und Yb3+-Spektroskopie wurde eingesetzt, um die strukturellen Veränderungen zu überwachen und die Möglichkeit des Transfers der Nanopartikel in Wasser zu bestimmen. PARAFAC erweist sich als ein leistungsfähiges Instrument zur Analyse von Lanthanidenspektren in kristallinen Feststoffen und in Lösungen, die durch zahlreiche Stark-Übergänge gekennzeichnet sind und bei denen Messungen in der Regel eine Überlagerung verschiedener Emissionsbeiträge zu einem bestimmten Spektrum ergeben. KW - cerium oxide KW - europium KW - luminescence KW - PARAFAC KW - ytterbium KW - species KW - Ceroxid KW - Lumineszenz KW - Nanokomposite KW - Spezies Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-619443 ER - TY - THES A1 - Pan, Xuefeng T1 - Soft-template directed functional composite nanomaterials N2 - Soft-template strategy enables the fabrication of composite nanomaterials with desired functionalities and structures. In this thesis, soft templates, including poly(ionic liquid) nanovesicles (PIL NVs), self-assembled polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) particles, and glycopeptide (GP) biomolecules have been applied for the synthesis of versatile composite particles of PILs/Cu, molybdenum disulfide/carbon (MoS2/C), and GP-carbon nanotubes-metal (GP-CNTs-metal) composites, respectively. Subsequently, their possible applications as efficient catalysts in two representative reactions, i.e. CO2 electroreduction (CO2ER) and reduction of 4-nitrophenol (4-NP), have been studied, respectively. In the first work, PIL NVs with a tunable particle size of 50 to 120 nm and a shell thickness of 15 to 60 nm have been prepared via one-step free radical polymerization. By increasing monomer concentration for polymerization, their nanoscopic morphology can evolve from hollow NVs to dense spheres, and finally to directional worms, in which a multi-lamellar packing of PIL chains occurred in all samples. The obtained PIL NVs with varied shell thickness have been in situ functionalized with ultra-small Cu nanoparticles (Cu NPs, 1-3 nm) and subsequently employed as the electrocatalysts for CO2ER. The hollow PILs/Cu composite catalysts exhibit a 2.5-fold enhancement in selectivity towards C1 products compared to the pristine Cu NPs. This enhancement is primarily attributed to the strong electronic interactions between the Cu NPs and the surface functionalities of PIL NVs. This study casts new aspects on using nanostructured PILs as novel electrocatalyst supports in efficient CO2 conversion. In the second work, a novel approach towards fast degradation of 4-NP has been developed using porous MoS2/C particles as catalysts, which integrate the intrinsically catalytic property of MoS2 with its photothermal conversion capability. Various MoS2/C composite particles have been prepared using assembled PS-b-P2VP block copolymer particles as sacrificed soft templates. Intriguingly, the MoS2/C particles exhibit tailored morphologies including pomegranate-like, hollow, and open porous structures. Subsequently, the photothermal conversion performance of these featured particles has been compared under near infrared (NIR) light irradiation. When employing the open porous MoS2/C particles as the catalyst for the reduction of 4-NP, the reaction rate constant has increased by 1.5-fold under light illumination. This catalytic enhancement mainly results from the open porous architecture and photothermal conversion performance of the MoS2 particles. This proposed strategy offers new opportunities for efficient photothermal-assisted catalysis. In the third work, a facile and green approach towards the fabrication of GP-CNTs-metal composites has been proposed, which utilizes a versatile GP biomolecule both as a stabilizer for CNTs in water and as a reducing agent for noble metal ions. The abundant hydrogen bonds in GP molecules bestow the formed GP-CNTs with excellent plasticity, enabling the availability of polymorphic CNTs species ranging from dispersion to viscous paste, gel, and even dough by increasing their concentration. The GP molecules can reduce metal precursors at room temperature without additional reducing agents, enabling the in situ immobilization of metal NPs (e.g. Au, Ag, and Pd) on the CNTs surface. The combination of excellent catalytic property of Pd NPs with photothermal conversion capability of CNTs makes the GP-CNTs-Pd composite a promising catalyst for the efficient degradation of 4-NP. The obtained composite displays a 1.6-fold increase in conversion under NIR light illumination in the reduction of 4-NP, mainly owing to the strong light-to-heat conversion effect of CNTs. Overall, the proposed method opens a new avenue for the synthesis of CNTs composite as a sustainable and versatile catalyst platform. The results presented in the current thesis demonstrate the significance of using soft templates for the synthesis of versatile composites with tailored nanostructure and functionalities. The investigation of these composite nanomaterials in the catalytic reactions reveals their potential in the development of desired catalysts for emerging catalytic processes, e.g. photothermal-assisted catalysis and electrocatalysis. N2 - Die Weiche-Vorlagen-Strategie ermöglicht die Herstellung von zusammengesetzten Nanomaterialien mit gewünschten Funktionalitäten und Strukturen. In dieser Arbeit wurden weiche Vorlagen, darunter Poly(ionische Flüssigkeit) -Nanovesikeln (PIL-NVs), selbstorganisierte Polystyrol-b-Poly(2-Vinylpyridin)-Partikeln (PS-b-P2VP) und Glykopeptid (GP)-Biomoleküle verwendet, um vielseitige Kompositen aus PILs/Cu, Molybdändisulfid/Kohlenstoff (MoS2/C) bzw. GP-Kohlenstoffnanoröhren -Metall (GP- CNTs- Metall) zu synthetisieren. Anschließend wurden ihre möglichen Anwendungen als effiziente Katalysatoren in zwei repräsentativen Reaktionen, d. h. CO2-Elektroreduktion (CO2ER) und Reduktion von 4-Nitrophenol (4-NP), untersucht. Im ersten Abschnitt wurden PIL-NVs mit einer einstellbaren Partikelgröße von 50 bis 120 nm und einer Schalendicke von 15 bis 60 nm durch einstufige radikalische Polymerisation hergestellt. Durch Erhöhung der Monomerkonzentration für die Polymerisation kann sich ihre nanoskopische Morphologie von hohlen NVs zu dichten Kugeln und schließlich zu gerichteten Schnecken entwickeln, wobei in allen Proben eine multilamellare Packung von PIL-Ketten auftritt. Die erhaltenen PIL-NVs mit unterschiedlicher Schalendicke wurden durch ultrakleinen Cu-Nanopartikeln (Cu-NPs, 1-3 nm) funktionalisiert und anschließend als Elektrokatalysatoren für CO 2ER eingesetzt. Die PILs/Cu-Komposit-Elektrokatalysatoren zeigen eine 2,5-fache Steigerung der Selektivität gegenüber C 1-Produkten im Vergleich zu den unbehandelten Cu-NPs. Diese Verbesserung wird in erster Linie auf die starken elektronischen Wechselwirkungen zwischen den Cu-NPs und den Oberflächenfunktionalitäten der PIL -NVs zurückgeführt. Diese Studie wirft neue Aspekte auf die Verwendung nanostrukturierter PILs als neuartige Elektrokatalysatorträger für eine effiziente CO2-Umwandlung. Im zweiten Abschnitt wurde ein neuartiger Ansatz für den schnellen Abbau von 4 -NP entwickelt, bei dem poröse MoS 2/C-Partikeln als Katalysatoren verwendet werden, die die intrinsische katalytische Eigenschaft von MoS2 mit seiner photothermischen Umwandlungsfähigkeit verbinden. Verschiedene MoS2/C-Verbundpartikeln wurden unter Verwendung von zusammengesetzten PS-b-P2VP Blockcopolymerpartikeln als geopferte weiche Vorlagen hergestellt. Erstaunlicherweise weisen die MoS2/C-Partikeln maßgeschneiderte Morphologien auf, darunter eine granatapfe lartige, hohle und offenporige Struktur. Anschließend wurde die photothermische Umwandlungsleistung dieser Partikeln unter Bestrahlung von Nahinfrarotlicht (NIR) verglichen. Bei der Verwendung der offenporigen MoS2-Teilchen als Katalysator für die Reduktion von 4 -NP hat sich die Reaktionsgeschwindigkeitskonstante unter Lichtbeleuchtung um das 1,5-fache erhöht. Diese katalytische Verbesserung ist hauptsächlich auf die offenporige Architektur und die photothermische Umwandlungsleistung der MoS2-Partikeln zurückzuführen. Diese vorgeschlagene Strategie bietet neue Möglichkeiten für eine effiziente photothermisch unterstützte Katalyse. Im dritten Abschnitt wird ein einfacher und umweltfreundlicher Ansatz für die Herstellung von GP-CNTs-Metall-Verbundwerkstoffen vorgeschlagen, bei dem ein vielseitiges GP- Biomolekül sowohl als Stabilisator für CNTs in Wasser auch als Reduktionsmittel für Edelmetallionen eingesetzt wird. Die zahlreichen Wasserstoffbrüc kenbindungen in den GP- Moleküle verleihen den gebildeten GP-CNTs eine ausgezeichnete Plastizität, die es ermöglicht, polymorphe CNT - Spezies zu erhalten, die von einer Dispersion über eine visko se Paste und ein Gel bis hin zu einem Teig reichen, wenn man ihre Konzentration erhöht. Die GP -Moleküle können Metallvorläufer bei Raumtemperatur ohne zusätzliche Reduktionsmittel reduzieren und ermöglichen so die In -situ- Immobilisierung von Metall-NPs (z. B. Au, Ag und Pd) auf der Oberfläche der CNTs. Die Kombination der hervorragenden katalytischen Eigenschaften von Pd-NPs mit der photothermischen Umwandlungsfähigkeit von CNTs macht den GP -CNTs-Pd- Verbundstoff zu einem vielversprechenden Katalysator für d en effizienten Abbau von 4- NP. Das erhaltene Komposit zeigt eine 1,6-fache Steigerung der Umwandlung unter NIR- Licht- Beleuchtung, wenn es als Katalysator bei der Reduktion von 4-NP verwendet wird, was hauptsächlich auf den starken Licht -Wärme -Umwandlungseffekt der CNTs zurückzuführen ist. Insgesamt eröffnet die vorgeschlagene Methode einen neuen Weg für die Synthese von CNT-Verbundwerkstoffen als nachhaltige und vielseitige Katalysatorplattform. Die in dieser Arbeit vorgestellten Ergebnisse zeigen, wie wichtig die Verwendung weicher Templates für die Synthese vielseitiger Verbundwerkstoffe mit maßgeschneiderter Nanostruktur und Funktionalitäten ist. Die Untersuchung dieser Komposit -Nanomaterialien in katalytischen Reaktionen zeigt ihr Potenzial für die Entwicklung gewünschter Katalysatoren für neue katalytische Prozesse, z. B. für die Elektrokatalyse und die photothermisch unterstützte Katalyse. KW - nanocomposite KW - soft template KW - block copolymer KW - poly(ionic liquid) KW - glycopeptide KW - catalyst KW - Nanokomposit KW - weiche Vorlage KW - Blockcopolymer KW - Poly(ionische Flüssigkeit) KW - Glykopeptid KW - Katalysator Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-612709 ER - TY - THES A1 - Ihlenburg, Ramona T1 - Sulfobetainhydrogele mit biomedizinischem Anwendungspotential und deren Netzwerkcharakterisierung im Gleichgewichtsquellzustand N2 - In dieser Dissertation konnten erfolgreich mechanisch stabile Hydrogele über eine freie radikalische Polymerisation (FRP) in Wasser synthetisiert werden. Dabei diente vor allem das Sulfobetain SPE als Monomer. Dieses wurde mit dem über eine nukleophile Substitution erster bzw. zweiter Ordnung hergestellten Vernetzer TMBEMPA/Br umgesetzt. Die entstandenen Netzwerke wurden im Gleichgewichtsquellzustand im Wesentlichen mittels Niederfeld-Kernresonanzspektroskopie, Röntgenkleinwinkelstreuung (SAXS), Rasterelektronenmikroskopie mit Tieftemperaturtechnik (Kryo-REM), dynamisch-mechanische Analyse (DMA), Rheologie, thermogravimetrische Analyse (TGA) und dynamische Differenzkalorimetrie (DSC) analysiert. Das hierarchisch aufgebaute Netzwerk wurde anschließend für die matrixgesteuerten Mineralisation von Calciumphosphat und –carbonat genutzt. Über das alternierende Eintauchverfahren (engl. „alternate soaking method“) und der Variation von Mineralisationsparametern, wie pH-Wert, Konzentration c und Temperatur T konnten dann verschiedene Modifikationen des Calciumphosphats generiert werden. Das entstandene Hybridmaterial wurde qualitativ mittels Röntgenpulverdiffraktometrie (XRD), abgeschwächte Totalreflexion–fouriertransformierte Infrarot Spektroskopie (ATR-FTIR), Raman-Spektroskopie, Rasterelektronenmikroskopie (REM) mit energiedispersiver Röntgenspektroskopie (EDXS) und optischer Mikroskopie (OM) als auch quantitative mittels Gravimetrie und TGA analysiert. Für die potentielle Verwendung in der Medizintechnik, z.B. als Implantatmaterial, ist die grundlegende Einschätzung der Wechselwirkung zwischen Hydrogel bzw. Hybridmaterial und verschiedener Zelltypen unerlässlich. Dazu wurden verschiedene Zelltypen, wie Einzeller, Bakterien und adulte Stammzellen verwendet. Die Wechselwirkung mit Peptidsequenzen von Phagen komplettiert das biologische Unterkapitel. Hydrogele sind mannigfaltig einsetzbar. Diese Arbeit fasst daher weitere Projektperspektiven, auch außerhalb des biomedizinischem Anwendungsspektrums, auf. So konnten erste Ansätze zur serienmäßige bzw. maßgeschneiderte Produktion über das „Inkjet“ Verfahren erreicht werden. Um dies ermöglichen zu können wurden erfolgreich weitere Synthesestrategien, wie die Photopolymerisation und die redoxinitiierte Polymerisation, ausgenutzt. Auch die Eignung als Filtermaterial oder Superabsorber wurde analysiert. N2 - In this current thesis, mechanically stable hydrogels were successfully synthesized via free radical polymerization (FRP) in water. In particular, the sulfobetaine SPE served as a monomer. This was reacted with the crosslinker TMBEMPA/Br prepared via first- and second-order nucleophilic substitution, respectively. The resulting networks were analyzed in the equilibrium swelling state mainly by low-field nuclear magnetic resonance spectroscopy, small-angle X-ray scattering (SAXS), scanning electron microscopy with cryogenic technique (cryo-REM), dynamic mechanical analysis (DMA), rheology, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). The hierarchical network was then used for matrix-controlled mineralization of calcium phosphate and carbonate. Using the alternate soaking method and varying mineralization parameters such as pH, concentration c and temperature T, different modifications of calcium phosphate could be generated. The resulting hybrid material was analyzed qualitatively by X-ray powder diffraction (XRD), attenuated total reflection Fourier transformed infrared spectroscopy (ATR-FTIR), Raman spectroscopy, scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDXS) and optical microscopy (OM) as well as quantitatively by gravimetry and TGA. For the potential use in medical technology, e.g. as implant material, the basic assessment of the interaction between hydrogel or hybrid material and different cell types is essential. For this purpose, different cell types, such as amoeba, bacteria and adult stem cells, were used. The interaction with peptide sequences of phages completes the biological subchapter. Hydrogels can be used in many different ways. This thesis therefore includes further project perspectives, also outside the biomedical application spectrum. Thus, first approaches to serial or customized production via the "inkjet" process could be achieved. To make this possible, other synthesis strategies such as photopolymerization and redox-initiated polymerization were successfully exploited. The suitability as filter material or superabsorbent was also analyzed. KW - Hydrogel KW - Calciumphosphat KW - Mineralisation KW - hydrogel KW - calcium phosphate KW - mineralization Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-607093 ER - TY - THES A1 - Breternitz, Joachim T1 - Structural systematic investigations of photovoltaic absorber materials N2 - The direct conversion of light from the sun into usable forms of energy marks one of the central cornerstones of the change of our living from the use of fossil, non-renewable energy resources towards a more sustainable economy. Besides the necessary societal changes necessary, it is the understanding of the solids employed that is of particular importance for the success of this target. In this work, the principles and approaches of systematic-crystallographic characterisation and systematisation of solids is used and employed to allow a directed tuning of the materials properties. The thorough understanding of the solid-state forms hereby the basis, on which more applied approaches are founded. Two material systems, which are considered as promising solar absorber materials, are at the core of this work: halide perovskites and II-IV-N2 nitride materials. While the first is renowned for its high efficiencies and rapid development in the last years, the latter is putting an emphasis on true sustainability in that toxic and scarce elements are avoided. N2 - Die direkte Umwandlung der Energie der Sonne bildet einen zentralen Baustein im Umbau unserer Gesellschaft von der Nutzung fossiler, nicht nachhaltiger Energieträger zum Erreichen einer nachhaltigen Wirtschaft. Neben den gesellschaftlichen Veränderungen ist es insbesondere das Verständnis der genutzten Festkörper, das den Motor dieser Entwicklung bildet. In dieser Arbeit werden Prinzipien der systematisch-kristallographischen Untersuchung und Kategorisierung von Festkörpern genutzt, um die Eigenschaften der Materialien gezielt steuern zu können. Dabei bildet das Verständnis des kristallinen Zustands und seine Untersuchung die Basis, auf der angewandtere Forschungsansätze aufbauen. In dieser Arbeit werden vor allem zwei Materialsysteme betrachtet, die als Absorbermaterialien in Solarzellen in Betracht gezogen werden: Halid-Perowskite und II-IV-N2-Nitrid Materialien. Die ersteren zeichnen sich insbesondere durch ihre erstaunlich hohen Effizienzen und rapide Entwicklung in den letzten Jahren aus, während das letztere System in besonderer Weise auf Nachhaltigkeit optimiert ist, und giftige oder seltene Elemente zu vermeiden sucht. KW - Materials Chemistry KW - Crystallography KW - Photovoltaics Y1 - 2023 ER -