TY - JOUR A1 - Raju, Rajarshi Roy A1 - Liebig, Ferenc A1 - Klemke, Bastian A1 - Koetz, Joachim T1 - pH-responsive magnetic Pickering Janus emulsions JF - Colloid and polymer science : official journal of the Kolloid-Gesellschaft N2 - We report ultrasonically generated pH-responsive Pickering Janus emulsions of olive oil and silicone oil with controllable droplet size and engulfment. Chitosan was used as a pH-responsive emulsifier. The increase of pH from 2 to 6 leads to a transition from completely engulfed double emulsion droplets to dumbbell-shaped Janus droplets accompanied by a significant decrease of droplet diameter and a more homogeneous size distribution. The results can be elucidated by the conformational change of chitosan from a more extended form at pH 2 to a more flexible form at pH 4-5. Magnetic responsiveness to the emulsion was attributed by dispersing superparamagnetic nanoparticles (Fe3O4 with diameter of 13 +/- 2 nm) in the olive oil phase before preparing the Janus emulsion. Incorporation of magnetic nanoparticles leads to superior emulsion stability, drastically reduced droplet diameters, and opened the way to control movement and orientation of the Janus droplets according to an external magnetic field. KW - Janus emulsion KW - Chitosan KW - pH-responsive KW - Magnetic-responsive KW - Cryo-SEM KW - TEM Y1 - 2018 U6 - https://doi.org/10.1007/s00396-018-4321-z SN - 0303-402X SN - 1435-1536 VL - 296 IS - 6 SP - 1039 EP - 1046 PB - Springer CY - New York ER - TY - JOUR A1 - Rumschoettel, Jens A1 - Kosmella, Sabine A1 - Prietzel, Claudia Christina A1 - Appelhans, Dietmar A1 - Koetz, Joachim T1 - DNA polyplexes with dendritic glycopolymer-entrapped gold nanoparticles JF - Colloids and surfaces : an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin ; B, Biointerfaces N2 - Polyplexes, composed of Salmon DNA and very small gold nanoparticles embedded into a dendritic glycopolymer architecture of sugar-modified poly(ethyleneimine) (PEI-Mal) with a molar mass of about 25,000 g/mol, were characterized by dynamic light scattering (DLS), zeta potential measurements, micro differential scanning calorimetry (mu-DSC) and transmission electron microscopy (TEM). The PEI-Mal-entrapped gold nanoparticles of about 2 nm in diameter influence the polyplex formation of the hyperbranched PEI containing bulky maltose, and in consequence the DNA is more compactized in the inner part of spherical polyplex particles of about 150 nm in diameter. The resulting more compact core shell polyplex particles with embedded gold nanoparticles in the outer polymer shell will be used as components in forthcoming gene delivery experiments. (C) 2017 Elsevier B.V. All rights reserved. KW - DNA polyplexes KW - Gold nanoparticles KW - Maltose-modified poly(ethyleneimine) KW - TEM KW - mu-DSC Y1 - 2017 U6 - https://doi.org/10.1016/j.colsurfb.2017.03.001 SN - 0927-7765 SN - 1873-4367 VL - 154 SP - 74 EP - 81 PB - Elsevier CY - Amsterdam ER -