TY - JOUR A1 - Hartlieb, Matthias A1 - Catrouillet, Sylvain A1 - Kuroki, Agnes A1 - Sanchez-Cano, Carlos A1 - Peltier, Raoul A1 - Perrier, Sebastien T1 - Stimuli-responsive membrane activity of cyclic-peptide-polymer conjugates JF - Chemical science N2 - Cyclic peptide nanotubes (CPNT) consisting of an even number of amino acids with an alternating chirality are highly interesting materials in a biomedical context due to their ability to insert themselves into cellular membranes. However, unwanted unspecific interactions between CPNT and non-targeted cell membranes are a major drawback. To solve this issue we have synthetized a series of CPNT-polymer conjugates with a cleavable covalent connection between macromolecule and peptide. As a result, the polymers form a stabilizing and shielding shell around the nanotube that can be cleaved on demand to generate membrane active CPNT from non-active conjugates. This approach enables us to control the stacking and lateral aggregation of these materials, thus leading to stimuli responsive membrane activity. Moreover, upon activation, the systems can be adjusted to form nanotubes with an increased length instead of aggregates. We were able to study the dynamics of these systems in detail and prove the concept of stimuli responsive membrane interaction using CPNT-polymer conjugates to permeabilize liposomes as well as mammalian cell membranes. Y1 - 2019 U6 - https://doi.org/10.1039/c9sc00756c SN - 2041-6520 SN - 2041-6539 VL - 10 IS - 21 SP - 5476 EP - 5483 PB - Royal Society of Chemistry CY - Cambridge ER -