TY - JOUR A1 - Williams, P. M. A1 - van der Hucht, K. A. T1 - The colliding-wind WC9+OB system WR 65 and dust formation by WR stars JF - Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.–5. June 2015 N2 - Observations of the WC9+OB system WR65 in the infrared show variations of its dust emission consistent with a period near 4.8 yr, suggesting formation in a colliding-wind binary (CWB) having an elliptical orbit. If we adopt the IR maximum as zero phase, the times of X-ray maximum count and minimum extinction to the hard component measured by Oskinova & Hamann fall at phases 0.4–0.5, when the separation of the WC9 and OB stars is greatest. We consider WR65 in the context of other WC8–9+OB stars showing dust emission. Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-88188 SP - 275 EP - 278 ER - TY - JOUR A1 - Wofford, A. A1 - Charlot, S. A1 - Eldridge, J. J. T1 - Properties of LEGUS Clusters Obtained with Different Massive-Star Evolutionary Tracks JF - Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.–5. June 2015 N2 - We compute spectral libraries for populations of coeval stars using state-of-the-art massive-star evolutionary tracks that account for different astrophysics including rotation and close-binarity. Our synthetic spectra account for stellar and nebular contributions. We use our models to obtain E(B – V ), age, and mass for six clusters in spiral galaxy NGC 1566, which have ages of < 50 Myr and masses of > 5 x 104M⊙ according to standard models. NGC 1566 was observed from the NUV to the I-band as part of the imaging Treasury HST program LEGUS: Legacy Extragalactic UV Survey. We aim to establish i) if the models provide reasonable fits to the data, ii) how well the models and photometry are able to constrain the cluster properties, and iii) how different the properties obtained with different models are. Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-88109 SP - 233 EP - 236 ER -