TY - THES A1 - Vranic, Marija T1 - 3D Structure of the biomarker hepcidin-25 in its native state T1 - 3D-Struktur des Biomarkers Hepcidin-25 im eigenen nativen Zustand N2 - Hepcidin-25 (Hep-25) plays a crucial role in the control of iron homeostasis. Since the dysfunction of the hepcidin pathway leads to multiple diseases as a result of iron imbalance, hepcidin represents a potential target for the diagnosis and treatment of disorders of iron metabolism. Despite intense research in the last decade targeted at developing a selective immunoassay for iron disorder diagnosis and treatment and better understanding the ferroportin-hepcidin interaction, questions remain. The key to resolving these underlying questions is acquiring exact knowledge of the 3D structure of native Hep-25. Since it was determined that the N-terminus, which is responsible for the bioactivity of Hep-25, contains a small Cu(II)-binding site known as the ATCUN motif, it was assumed that the Hep-25-Cu(II) complex is the native, bioactive form of the hepcidin. This structure has thus far not been elucidated in detail. Owing to the lack of structural information on metal-bound Hep-25, little is known about its possible biological role in iron metabolism. Therefore, this work is focused on structurally characterizing the metal-bound Hep-25 by NMR spectroscopy and molecular dynamics simulations. For the present work, a protocol was developed to prepare and purify properly folded Hep-25 in high quantities. In order to overcome the low solubility of Hep-25 at neutral pH, we introduced the C-terminal DEDEDE solubility tag. The metal binding was investigated through a series of NMR spectroscopic experiments to identify the most affected amino acids that mediate metal coordination. Based on the obtained NMR data, a structural calculation was performed in order to generate a model structure of the Hep-25-Ni(II) complex. The DEDEDE tag was excluded from the structural calculation due to a lack of NMR restraints. The dynamic nature and fast exchange of some of the amide protons with solvent reduced the overall number of NMR restraints needed for a high-quality structure. The NMR data revealed that the 20 Cterminal Hep-25 amino acids experienced no significant conformational changes, compared to published results, as a result of a pH change from pH 3 to pH 7 and metal binding. A 3D model of the Hep-25-Ni(II) complex was constructed from NMR data recorded for the hexapeptideNi(II) complex and Hep-25-DEDEDE-Ni(II) complex in combination with the fixed conformation of 19 C-terminal amino acids. The NMR data of the Hep-25-DEDEDE-Ni(II) complex indicates that the ATCUN motif moves independently from the rest of the structure. The 3D model structure of the metal-bound Hep-25 allows for future works to elucidate hepcidin’s interaction with its receptor ferroportin and should serve as a starting point for the development of antibodies with improved selectivity. N2 - Hepcidin-25 (Hep-25) spielt eine entscheidende Rolle bei der Kontrolle der Eisenhomöostase. Da die Dysfunktion des Hepcidin-Signalweges aufgrund des Eisenungleichgewichts zu mehreren Krankheiten führt, stellt Hepcidin ein potenzielles Ziel für die Diagnose und Behandlung von Störungen des Eisenstoffwechsels dar. Trotz intensiver Forschung in den letzten zehn Jahren, die darauf abzielte, einen selektiven Immunoassay für die Diagnose und Behandlung von Eisenerkrankungen zu entwickeln und die Ferroportin-Hepcidin-Interaktion besser zu verstehen, bleiben Fragen offen. Der Schlüssel zur Lösung dieser grundlegenden Fragen liegt darin, genaue Kenntnisse über die 3D-Struktur des nativen Hep-25 zu erlangen. Da festgestellt wurde, dass der N-Terminus, der für die Bioaktivität von Hep-25 verantwortlich ist, eine kleine Cu(II)-Bindungsstelle enthält, die als ATCUN-Motiv bekannt ist, wurde angenommen, dass der Hep-25- Cu(II)-Komplex die native, bioaktive Form des Hepcidins ist. Diese Struktur ist bisher noch nicht im Detail untersucht worden. Aufgrund fehlender Strukturinformationen über metallgebundenes Hep-25 ist wenig über seine mögliche biologische Rolle im Eisenstoffwechsel bekannt. Daher konzentriert sich diese Arbeit auf die strukturelle Charakterisierung des metallgebundenen Hep-25 mittels NMR-Spektroskopie und Molekulardynamik Simulationen. In der vorliegenden Arbeit wurde ein Protokoll zur Präparation und Reinigung von korrekt gefaltetem Hep-25 in hohen Mengen entwickelt. Um das Problem der geringen Löslichkeit von Hep-25 bei neutralem pH-Wert zu überwinden, haben wir einen C-terminalen DEDEDEDE Löslichkeits-Tag eingeführt. Die Metallbindung wurde durch eine Reihe von NMRspektroskopischen Experimenten untersucht, um die Aminosäuren zu identifizieren, welche an der Metallkoordination beteiligt sind. Basierend auf den erhaltenen NMR-Daten wurde eine Strukturberechnung durchgeführt, um eine Modellstruktur des Hep-25-Ni(II)-Komplexes zu erzeugen. Der DEDEDE-Tag wurde aufgrund fehlender NMR- restraints von der Strukturberechnung ausgeschlossen. Die dynamische Natur und der schnelle Austausch eines Teils der Amid-Protonen mit dem Lösungsmittel reduzierten die Gesamtzahl der NMR- restraints, die für eine hochwertige Struktur erforderlich waren. Die NMR-Daten zeigten, dass die 20 C-terminalen Hep-25-Aminosäuren keine signifikanten Konformationsänderungen als Folge eines pH-Wechsels von pH 3 auf pH 7 und einer Metallbindung erfuhren. Ein 3D-Modell des Hep-25-Ni(II)-Komplexes wurde aus den NMR-Daten des Hexapeptid-Ni(II)-Komplexes und des Hep-25-DEDEDE-Ni(II)-Komplexes in Kombination mit der bekannten Konformation der 19 C-terminalen Aminosäuren erstellt. Die NMR-Daten des Hep-25-DEDEDE-Ni(II)Komplexes zeigen, dass sich das Ni-ATCUN-Motiv unabhängig vom C-Terminus bewegt. Die 3D-Modellstruktur des metallgebundenen Hep-25 ermöglicht es, in Zukunft die Interaktion von Hepcidin mit seinem Rezeptor Ferroportin zu untersuchen und soll als Ausgangspunkt für die Entwicklung von Antikörpern mit verbesserter Selektivität dienen. KW - iron KW - hepcidin KW - peptide KW - metal KW - binding KW - NMR KW - Eisen KW - Hepcidin KW - Peptid KW - Metall KW - Bindung KW - NMR Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-459295 ER - TY - THES A1 - Hentschel, Jens T1 - Synthese und kontrollierte Mikrostrukturbildung funktionaler Peptid-Polymerkonjugate in organischen Lösungsmitteln T1 - Synthesis and controlled microstructure formation of functional peptide-polymer conjugates in organic media N2 - In der vorliegenden Arbeit wurde ein Ansatz verfolgt, die besonderen Eigenschaften der Strukturbildung sequenzdefinierter Peptide mit den vielseitigen Materialeigenschaften synthetischer Blockcopolymere zu kombinieren. Dazu wurde ein synthetisches Polymer kovalent mit einer definierten Peptidsequenz verknüpft. Der Peptidblock (die Organisationseinheit) wurde speziell designt, um später die Strukturbildung des Peptid-Polymerkonjugates induzieren und leiten zu können. Als Organisationsmotiv diente hierbei das aus der Natur bekannte β-Faltblatt Strukturmotiv. Das Peptidsegment wurde in einer festphasengebundenen Synthese aufgebaut. Dabei wurden temporäre Stör-Segmente (Switch-Segmente) in die Peptidsequenz integriert. Diese Segmente unterdrücken die Aggregationstendenz während der Synthese und können durch einen pH-abhängigen Schaltvorgang in das natürliche Peptidrückgrat überführt werden. Zusätzlich zu der verbesserten Ausbeute und Reinheit der entsprechenden Peptide war auf diese Weise eine kontrollierte Aktivierung der Mikrostrukturbildung möglich. Mit Hilfe zwei verschiedener Synthesestrategien (Kupplungs- bzw. Polymerisationsstrategie) wurde ein Satz von definierten Peptid-Polymerkonjugaten mit unterschiedlich großen Polymersegmenten synthetisiert. Diese wurden anschließend im Hinblick auf ihre Strukturbildungseigenschaften in organischen Lösungsmitteln untersucht. Durch mikroskopische Verfahren (AFM, TEM), konnte für alle Konjugate, die Bildung faserartiger Aggregate mit Dimensionen im Nano- bis Mikrometerbereich beobachtet werden. Genauere Untersuchungen zeigten, dass die Peptidsegmente in diesen Faserstrukturen ein β-Faltblatt ausbilden. Dies ist ein deutlicher Hinweis darauf, dass die Strukturbildung der Konjugate tatsächlich durch den Peptidblock gesteuert und kontrolliert wurde. N2 - The aim of this work was to combine the particular structuring properties of sequence-defined peptides with the versatile material properties of synthetic block-copolymers. Therefor, synthetic polymers were linked covalently to a defined oligopeptide-sequence using varying synthetic approaches. The oligopeptide was designed to guide and control the microstructure formation of the peptide-polymer conjugate. For this reason a peptide sequence with a high propensity to adopt the β-sheet motif was chosen. Thus, highly attractive, anisometric tape, fibrillar or fibre-like nanostructures can be accessed. However, such peptide-sequences are very difficult to synthesize and handle, as a result of their strong aggregation tendency. Therefore, temporary structure breaking units, so called switch-segments, were integrated into the peptide sequence, disturbing the peptide backbone and thus, temporarily suppressing the peptide properties. The controlled rearrangement of these defects reestablishes the native peptide backbone, switching the aggregation tendency of the peptide segment on, and triggers the assembly process. A set of defined peptide-polymer conjugates with different polymer block-lengths was synthesized either by an coupling approach or by RAFT polymerization using a switch-peptide macro chain transfer agent. Afterwards, the structure formation properties of these conjugates were investigated. By the use of microscopic techniques (AFM, TEM), the formation of densely twisted tape-like microstructures was observed for all conjugates. The formation of extended β-sheets was confirmed by different techniques (FT-IR, TEM-SAED), indicating a peptide guided microstructure formation process. Thus, it could be demonstrated that the peptide guided organization of synthetic polymers can be successfully transferred into organic solvents. KW - Peptid KW - Polymer KW - Strukturbildung KW - RAFT KW - peptide KW - polymer KW - switch KW - RAFT KW - nanostructure Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-19840 ER - TY - THES A1 - Rettig, Hartmut Arnim T1 - Methoden zur Synthese von definierten bioorganisch-synthetischen Blockcopolymeren T1 - Pathways to defined bioorganic-synthetic conjugates N2 - Bioorganisch-synthetische Blockcopolymere sind sowohl für die Materialwissenschaft als auch für die Medizin hochinteressant. Diese Arbeit beschäftigte sich mit neuen Synthesewegen für die Herstellung dieser Blockcopolymere. Zunächst wurde der klassische Ansatz zur Herstellung eines Blockcopolymers über die Kupplung der beiden Segmente aufgegriffen. Hierzu wurde eine Methode zur Synthese von selektiv säureendfunktionalisierten Polyacrylaten mittels einer terminalen Benzylesterschutzgruppe vorgestellt. Für die Herstellung von bioorganisch-synthetischen Blockcopolymeren mit einem größeren Polymersegment wurde daher ein anderer Syntheseansatz entwickelt. Dieser geht von einem funktionalisierten Oligopeptid aus, an dem durch Polymerisation das synthetische Segment aufgebaut wird. Der Aufbau erfolgte durch kontrolliert radikalische Polymerisation, um ein möglichst definiertes Segment zu erhalten. Zunächst wurde eine Synthese von Oligopeptid-Makroinitiatoren für die ATRP-Polymerisation durchgeführt. Es konnte gezeigt werden, dass in geeigneten polaren Lösungsmitteln (DMSO, DMF) eine Polymerisation mit dem ATRP-Oligopeptid-Makroinitiator erfolgreich ist. Allerdings treten während der Polymerisation Wechselwirkungen zwischen dem Katalysator und dem Oligopeptid auf. Eine Alternative bietet die RAFT-Polymerisation, da sie ohne einen Katalysator durchgeführt wird. Es gelang ausgehend von dem Oligopeptid-ATRP-Makroinitiator den Überträger herzustellen. Die RAFT-Polymerisation mit einem Oligopeptidüberträger stellt eine wichtige Methode für die Herstellung von bioorganisch-synthetischen Blockcopolymeren dar. Sie besitzt eine hohe Toleranz gegenüber funktionellen Gruppen. Die so hergestellten Blockcopolymere sind frei von Verunreinigungen, wie z.B. Übergangsmetallen. Dabei läßt sich das Molekulargewicht des synthetischen Blocks bei einer Polydispersität um 1,2 gut kontrollieren. N2 - Bioorganic – synthetic conjugates have received a lot of attention concerning their potentials in the fields of material science, pharmaceutics and medicine. This work presents new synthetic routes to these conjugates. For conjugates consisting of small blocks an approach via coupling is possible. For larger blocks it was necessary to develop a different approach via controlled radical polymerisation methods. To begin with oligopeptide macroinitiators for Atom Transfer Radical Polymerisation were synthesized and successful applied in polymerization. The reaction conditions were optimized by studying the polymerisation kinetics. Although the polymerization results in well-defined products, interactions between the copper catalyst and the peptide are evident and cannot be suppressed. To overcome this problem the polymerization method had to be changed. Therefore oligopeptide-based reversible addition fragmentation transfer (RAFT) agents were developed. Well-defined conjugates comprising sequenz-defined peptides and synthetic polymers could be accessed by applying RAFT polymerization techniques in combination with the peptide macrotransfer agents. Polymerization reactions of n-butyl acrylate were performed in solution, yielding peptide-polymer conjugates with controllable molecular weight and low polydispersities. KW - ATRP KW - ATRP KW - RAFT KW - Blockcopolymer KW - Peptid KW - Makroinitiator KW - ATRP KW - RAFT KW - conjugates KW - peptide Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-10293 ER -