TY - THES A1 - Künstler, Andreas T1 - Spot evolution on the red giant star XX Triangulum T1 - Entwicklung von Sternflecken auf dem roten Riesenstern XX Triangulum N2 - Spots on stellar surfaces are thought to be stellar analogues of sunspots. Thus, starspots are direct manifestations of strong magnetic fields. Their decay rate is directly related to the magnetic diffusivity, which itself is a key quantity for the deduction of an activity cycle length. So far, no single starspot decay has been observed, and thus no stellar activity cycle was inferred from its corresponding turbulent diffusivity. We investigate the evolution of starspots on the rapidly-rotating K0 giant XX Triangulum. Continuous high-resolution and phase-resolved spectroscopy was obtained with the robotic 1.2-m STELLA telescope on Tenerife over a timespan of six years. With our line-profile inversion code iMap we reconstruct a total of 36 consecutive Doppler maps. To quantify starspot area decay and growth, we match the observed images with simplified spot models based on a Monte-Carlo approach. It is shown that the surface of XX Tri is covered with large high-latitude and even polar spots and with occasional small equatorial spots. Just over the course of six years, we see a systematically changing spot distribution with various time scales and morphology such as spot fragmentation and spot merging as well as spot decay and formation. For the first time, a starspot decay rate on another star than the Sun is determined. From our spot-decay analysis we determine an average linear decay rate of D = -0.067±0.006 Gm^2/day. From this decay rate, we infer a turbulent diffusivity of η_τ = (6.3±0.5) x 10^14 cm^2/s and consequently predict an activity cycle of 26±6 years. The obtained cycle length matches very well with photometric observations. Our time-series of Doppler maps further enables to investigate the differential rotation of XX Tri. We therefore applied a cross-correlation analysis. We detect a weak solar-like differential rotation with a surface shear of α = 0.016±0.003. This value agrees with similar studies of other RS CVn stars. Furthermore, we found evidence for active longitudes and flip-flops. Whereas the more active longitude is located in phase towards the (unseen) companion star, the weaker active longitude is located at the opposite stellar hemisphere. From their periodic appearance, we infer a flip-flop cycle of ~2 years. Both activity phenomena are common on late-type binary stars. Last but not least we redetermine several astrophysical properties of XX Tri and its binary system, as large datasets of photometric and spectroscopic observations are available since its last determination in 1999. Additionally, we compare the rotational spot-modulation from photometric and spectroscopic studies. N2 - Sternflecken gelten als stellare Analoga zu Sonnenflecken. Somit sind Sternflecken direkte Erscheinungsformen starker Magnetfelder. Ihre Zerfallsrate ist direkt mit der magnetischen Diffusivität verknüpft, welche selbst ein Maß für die Länge eines Aktivitätszyklus ist. Bislang konnte noch kein Zerfall eines einzelnen Sternflecks beobachtet werden und somit konnte noch kein stellarer Aktivitätszyklus mittels einer aus dem Fleckenzerfall abgeleiteten Diffusivität bestimmt werden. Wir untersuchen die Entwicklung von Sternflecken auf dem schnell rotierenden K0 Riesenstern XX Triangulum. Über einen Zeitraum von sechs Jahren wurden durchgängig hochauflösende Spektren mit dem 1.2-m STELLA Teleskop auf Teneriffa aufgenommen. Mit unserem Inversionscode für Linienprofile (iMap) werden insgesamt 36 Dopplerkarten der Sternoberfläche rekonstruiert. Um sowohl den Zerfall als auch die Entstehung von Sternflecken zu bestimmen, werden die rekonstruierten Dopplerkarten mit vereinfachten Fleckenmodellen mittels einer Monte-Carlo-Methode abgebildet. Es zeigt sich, dass die Oberfläche von XX Tri mit großen Flecken auf hohen und sogar polaren Breiten bedeckt ist sowie gelegentlichen kleineren Flecken nahe des Äquators. Gerade in der Zeitspanne von sechs Jahren sehen wir eine systematische Veränderung der Fleckenverteilung auf unterschiedlichen Zeitskalen und mit unterschiedlicher Morphologie, wie Fleckenaufspaltung und Fleckenvereinigung sowie Fleckenzerfall und Fleckenentstehung. Zum ersten Mal wird die Zerfallsrate eines Sternflecks auf einem anderen Stern als der Sonne bestimmt. Von unserer Fleckenzerfallsanalyse bestimmen wir eine mittlere lineare Zerfallsrate von D = -0.067±0.006 Gm^2/d. Von dieser Zerfallsrate leiten wir eine turbulente Diffusivität von η_τ = (6.3±0.5) x 10^14 cm^2/s ab, und schließen daraus einen Aktivitätszyklus von 26±6 Jahren. Diese Zykluslänge stimmt gut mit photometrischen Beobachtungen überein. Unsere Dopplerkarten ermöglichen zusätzlich die Untersuchung der differentiellen Rotation auf XX Tri, wofür eine Kreuzkorrelationsmethode angewandt wird. Wir detektieren eine schwache sonnenähnliche differentielle Rotation mit einer Oberflächenscherung von α = 0.016±0.003. Dieser Wert stimmt mit vergleichbaren Untersuchungen anderer RS CVn-Sterne überein. Zudem haben wir Anzeichen für aktive Longituden und Flip-Flops gefunden. Während sich die aktivere Longitude in Phase zu dem (nicht sichtbaren) Begleitstern befindet, liegt die schwächere aktive Longitude auf der gegenüberliegenden Hemisphäre. Aus ihrem periodischen Auftreten schließen wir auf einen Flip-Flop-Zyklus von ungefähr zwei Jahren. Beide Aktivitätserscheinungen sind häufig auf Doppelsternen späten Spektraltyps zu finden. Zu guter Letzt bestimmen wir die astrophysikalischen Eigenschaften von XX Tri neu, da seit der letzten Bestimmung im Jahre 1999 große neue Datensätze unterschiedlicher Beobachtungen vorhanden sind. Zusätzlich vergleichen wir die periodische Fleckenmodulation aus photometrischen und spektroskopischen Analysen. KW - stellar physics KW - stellar activity KW - Doppler imaging KW - Sternphysik KW - Sternaktivität KW - Doppler Imaging Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-84008 ER - TY - THES A1 - Mallonn, Matthias T1 - Ground-based transmission spectroscopy of three inflated Hot Jupiter exoplanets T1 - Bodengebundene Transmissionsspektroskopie von drei ausgedehnten Hot Jupiter Exoplaneten N2 - The characterization of exoplanets is a young and rapidly expanding field in astronomy. It includes a method called transmission spectroscopy that searches for planetary spectral fingerprints in the light received from the host star during the event of a transit. This techniques allows for conclusions on the atmospheric composition at the terminator region, the boundary between the day and night side of the planet. Observationally a big challenge, first attempts in the community have been successful in the detection of several absorption features in the optical wavelength range. These are for example a Rayleighscattering slope and absorption by sodium and potassium. However, other objects show a featureless spectrum indicative for a cloud or haze layer of condensates masking the probable atmospheric layers. In this work, we performed transmission spectroscopy by spectrophotometry of three Hot Jupiter exoplanets. When we began the work on this thesis, optical transmission spectra have been available for two exoplanets. Our main goal was to advance the current sample of probed objects to learn by comparative exoplanetology whether certain absorption features are common. We selected the targets HAT-P-12b, HAT-P-19b and HAT-P-32b, for which the detection of atmospheric signatures is feasible with current ground-based instrumentation. In addition, we monitored the host stars of all three objects photometrically to correct for influences of stellar activity if necessary. The obtained measurements of the three objects all favor featureless spectra. A variety of atmospheric compositions can explain the lack of a wavelength dependent absorption. But the broad trend of featureless spectra in planets of a wide range of temperatures, found in this work and in similar studies recently published in the literature, favors an explanation based on the presence of condensates even at very low concentrations in the atmospheres of these close-in gas giants. This result points towards the general conclusion that the capability of transmission spectroscopy to determine the atmospheric composition is limited, at least for measurements at low spectral resolution. In addition, we refined the transit parameters and ephemerides of HAT-P-12b and HATP- 19b. Our monitoring campaigns allowed for the detection of the stellar rotation period of HAT-P-19 and a refined age estimate. For HAT-P-12 and HAT-P-32, we derived upper limits on their potential variability. The calculated upper limits of systematic effects of starspots on the derived transmission spectra were found to be negligible for all three targets. Finally, we discussed the observational challenges in the characterization of exoplanet atmospheres, the importance of correlated noise in the measurements and formulated suggestions on how to improve on the robustness of results in future work. N2 - Die Charakterisierung von Exoplaneten ist ein junger und sich schnell entwickelnder Zweig der Astronomie. Eine ihrer Methoden ist die Transmissionsspektroskopie, welche nach spektralen Abdrücken der Planetenatmosphäre im Licht des Muttersterns sucht. Diese Technik macht sich den Umstand zunutze, dass Planeten mit niedriger Bahnneigung einmal pro Umlauf vor ihrem Stern vorbeiziehen, wobei das Sternlicht Teile der Planetenatmosphäre durchläuft. Durch die Auswertung solcher Transitbeobachtungen lässt sich auf die chemische Zusammensetzung der Planetenatmosphäre schließen. Trotz der groβen Herausforderung an die benötigte Messgenauigkeit konnten bereits erste vielversprechende Ergebnisse erzielt werden und Entdeckungen wie zum Beispiel Rayleighstreuung und Absorption von Natrium und Kalium vermeldet werden. Andere Beobachtungen zeigten aber auch gänzlich flache Spektren ohne wellenlängenabhängige Absorption, welche auf eine Wolkenschicht oder Dunst in den Atmosphären hinweisen. In dieser Arbeit führten wir Transmissionsspektroskopie für drei extrasolare Planeten aus der Klasse der heißen Jupiter-artigen Gasriesen durch. Als wir mit unserer Studie begannen, waren erst zwei derartige Objekte erfolgreich auf ihr Spektrum im optischen Wellenlängenbereich untersucht worden. Unser Ziel war es, diese Anzahl zu erhöhen, um herauszufinden, welche spektralen Eigenschaften typisch für diese Exoplaneten sind. Wir wählten drei Objekte aus, für welche die zu erwartenden Messgenauigkeiten ausreichend für signifikante Ergebnisse sind: HAT-P-12b, HAT-P-19b und HAT-P-32b. Zusätzlich unternahmen wir Langzeitbeobachtungen der Muttersterne dieser Planeten, um die Transitbeobachtungen auf einen möglichen Einfluss von Sternaktivität zu korrigieren. Die erzielten Messungen der drei Planeten deuten alle auf Spektren ohne Absorptionslinien hin. Das Fehlen dieser Linien kann durch verschiedene Möglichkeiten zustande kommen, welche für die einzelnen Objekte individuell variieren können. Der Umstand jedoch, dass allen Objekten diese Linien fehlen und dass ähnliche Ergebnisse für weitere Objekte kürzlich in der Literatur publiziert wurden, deutet darauf hin, dass für einen bedeutenden Teil der Exoplaneten die Atmosphären nicht transparent, sondern durch kondensiertes Material optisch undurchlässig sind. Sollte sich dieses Ergebnis durch zukünftige Beobachtungen bestätigen, bedeutet es, dass die Transmissionsspektroskopie als Beobachtungstechnik nur sehr begrenzt für die Charakterisierung dieser Planetenatmosphären nützlich ist. Nur Beobachtungen hochaufgelöster Spektroskopie könnten dann verwertbare Informationen liefern. Weiterhin konnten wir in unserer Arbeit die Transitparameter und Ephemeriden von HAT-P-12b und HAT-P-19b genauer vermessen als es vorherigen Analysen möglich war. Durch unsere Langzeitbeobachtungen konnte die Rotationsperiode von HAT-P-19 bestimmt, sowie das Alter dieses Muttersterns neu berechnet werden. Ebenso leiteten wir Höchstwerte für eine mögliche Veränderlichkeit von HAT-P-12 und HAT-P-32 ab. Wir errechneten die Korrekturen der Transitparameter auf die Einflüsse von Sternaktivität und stellten fest, dass diese die Messergebnisse nicht wesentlich beeinflussen. Unsere Arbeit erlaubte tiefe Einblicke in die technischen Herausforderungen, welche diese Wissenschaft an die Sternbeobachtungen stellt. Wir diskutierten den Einfluss von systematischen Fehlern in den Messreihen und erarbeiteten Empfehlungen, wie die Messergebnisse weiter verbessert werden können. KW - extrasolar planets KW - atmospheric characterization KW - transmission spectroscopy KW - stellar variability KW - stellar activity KW - extrasolare Planeten KW - Charakterisierung Planetenatmosphären KW - Sternaktivität Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-74403 ER - TY - THES A1 - Weber, Michael H. T1 - Robotic telescopes & Doppler imaging : measuring differential rotation on long-period active stars N2 - Auf der Sonne sind viele Phänomene zu sehen die mit der solaren magnetischen Aktivität zusammenhängen. Das dafür zuständige Magnetfeld wird durch einen Dynamo erzeugt, der sich vermutlich am Boden der Konvektionszone in der sogenannten Tachocline befindet. Angetrieben wird der Dynamo teils von der differenziellen Rotation, teils von den magnetischen Turbulenzen in der Konvektionszone. Die differentielle Rotation kann an der Sonnenoberfläche durch beobachten der Sonnenfleckbewegungen gemessen werden.Um einen größeren Parameterraum zum Testen von Dynamotheorien zu erhalten, kann man diese Messungen auch auf andere Sterne ausdehnen. Das primäre Problem dabei ist, dass die Oberflächen von Sternen nicht direkt beobachtet werden können. Indirekt kann man dies jedoch mit Hilfe der Doppler-imaging Methode erreichen, die die Doppler-Verbreitung der Spektrallinien von schnell rotierenden Sternen benützt. Um jedoch ein Bild der Sternoberfläche zu erhalten, bedarf es vieler hochaufgelöster spektroskopischer Beobachtungen, die gleichmäßig über eine Sternrotation verteilt sein müssen. Für Sterne mit langen Rotationsperioden sind diese Beobachtungen nur schwierig durchzuführen. Das neue robotische Observatorium STELLA adressiert dieses Problem und bietet eine auf Dopplerimaging abgestimmte Ablaufplanung der Beobachtungen an. Dies wird solche Beobachtungen nicht nur leichter durchführbar machen, sondern auch effektiver gestalten.Als Vorschau welche Ergebnisse mit STELLA erwartet werden können dient eine Studie an sieben Sternen die allesamt eine lange (zwischen sieben und 25 Tagen) Rotationsperiode haben. Alle Sterne zeigen differentielle Rotation, allerdings sind die Messfehler aufgrund der nicht zufriedenstellenden Datenqualität von gleicher Größenordnung wie die Ergebnisse, ein Problem das bei STELLA nicht auftreten wird. Um die Konsistenz der Ergebnisse zu prüfen wurde wenn möglich sowohl eine Kreuzkorrelationsanalyse als auch die sheared-image Methode angewandt. Vier von diesen sieben Sternen weisen eine differentielle Rotation in umgekehrter Richtung auf als auf der Sonne zu sehen ist. Die restlichen drei Sterne weisen schwache, aber in der Richtung sonnenähnliche differentielle Rotation auf.Abschließend werden diese neuen Messungen mit bereits publizierten Werten kombiniert, und die so erhaltenen Daten auf Korrelationen zwischen differentieller Rotation, Rotationsperiode, Evolutionsstaus, Spektraltyp und Vorhandensein eines Doppelsterns überprüft. Alle Sterne zusammen zeigen eine signifikante Korrelation zwischen dem Betrag der differenziellen Rotation und der Rotationsperiode. Unterscheidet man zwischen den Richtungen der differentiellen Rotation, so bleibt nur eine Korrelation der Sterne mit antisolarem Verhalten. Darüberhinaus zeigt sich auch, dass Doppelsterne schwächer differentiell rotieren. N2 - The sun shows a wide variety of magnetic-activity related phenomena. The magnetic field responsible for this is generated by a dynamo process which is believed to operate in the tachocline, which is located at the bottom of the convection zone. This dynamo is driven in part by differential rotation and in part by magnetic turbulences in the convection zone. The surface differential rotation, one key ingredient of dynamo theory, can be measured by tracing sunspot positions.To extend the parameter space for dynamo theories, one can extend these measurements to other stars than the sun. The primary obstacle in this endeavor is the lack of resolved surface images on other stars. This can be overcome by the Doppler imaging technique, which uses the rotation-induced Doppler-broadening of spectral lines to compute the surface distribution of a physical parameter like temperature. To obtain the surface image of a star, high-resolution spectroscopic observations, evenly distributed over one stellar rotation period are needed. This turns out to be quite complicated for long period stars. The upcoming robotic observatory STELLA addresses this problem with a dedicated scheduling routine, which is tailored for Doppler imaging targets. This will make observations for Doppler imaging not only easier, but also more efficient.As a preview of what can be done with STELLA, we present results of a Doppler imaging study of seven stars, all of which show evidence for differential rotation, but unfortunately the errors are of the same order of magnitude as the measurements due to unsatisfactory data quality, something that will not happen on STELLA. Both, cross-correlation analysis and the sheared image technique where used to double check the results if possible. For four of these stars, weak anti-solar differential rotation was found in a sense that the pole rotates faster than the equator, for the other three stars weak differential rotation in the same direction as on the sun was found.Finally, these new measurements along with other published measurements of differential rotation using Doppler imaging, were analyzed for correlations with stellar evolution, binarity, and rotation period. The total sample of stars show a significant correlation with rotation period, but if separated into antisolar and solar type behavior, only the subsample showing anti-solar differential rotation shows this correlation. Additionally, there is evidence for binary stars showing less differential rotation as single stars, as is suggested by theory. All other parameter combinations fail to deliver any results due to the still small sample of stars available. T2 - Robotic telescopes & Doppler imaging : measuring differential rotation on long-period active stars KW - Teleskop KW - Robotik KW - Differentielle Rotation KW - Tomographie KW - Sternoberfläche KW - Sternaktivität KW - telescope KW - robotic KW - differential rotation KW - tomography KW - stellar surface KW - stellar activity Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-0001834 ER -