TY - JOUR A1 - Kneis, David T1 - A lightweight framework for rapid development of object-based hydrological model engines JF - Environmental modelling & software with environment data news N2 - Computer-based simulation models are frequently used in hydrological research and engineering but also in other fields of environmental sciences. New case studies often require existing model concepts to be adapted. Extensions may be necessary due to the peculiarities of the studied natural system or subtleties of anthropogenic control. In other cases, simplifications must be made in response to scarce data, incomplete knowledge, or restrictions set by the spatio-temporal scale of application. This paper introduces an open-source modeling framework called ECHSE designed to cope with the above-mentioned challenges. It provides a lightweight infrastructure for the rapid development of new, reusable simulation tools and, more importantly, the safe modification of existing formulations. ECHSE-based models treat the simulated system as a collection of interacting objects. Although feedbacks are generally supported, the majority of the objects' interactions is expected to be of the feed-forward type. Therefore, the ECHSE software is particularly useful in the context of hydrological catchment modeling. Conversely, it is unsuitable, e.g., for fully hydrodynamic simulations and groundwater flow modeling. The focus of the paper is put on a comprehensible outline of the ECHSE's fundamental concepts and limitations. For the purpose of illustration, a specific, ECHSE-based solution for hydrological catchment modeling is presented which has undergone testing in a number of river basins. (C) 2015 Elsevier Ltd. All rights reserved. KW - Modeling framework KW - Genetic model KW - Hydrology KW - ECHSE Y1 - 2015 U6 - https://doi.org/10.1016/j.envsoft.2015.02.009 SN - 1364-8152 SN - 1873-6726 VL - 68 SP - 110 EP - 121 PB - Elsevier CY - Oxford ER -