TY - THES A1 - Grum, Marcus T1 - Construction of a concept of neuronal modeling N2 - The business problem of having inefficient processes, imprecise process analyses, and simulations as well as non-transparent artificial neuronal network models can be overcome by an easy-to-use modeling concept. With the aim of developing a flexible and efficient approach to modeling, simulating, and optimizing processes, this paper proposes a flexible Concept of Neuronal Modeling (CoNM). The modeling concept, which is described by the modeling language designed and its mathematical formulation and is connected to a technical substantiation, is based on a collection of novel sub-artifacts. As these have been implemented as a computational model, the set of CoNM tools carries out novel kinds of Neuronal Process Modeling (NPM), Neuronal Process Simulations (NPS), and Neuronal Process Optimizations (NPO). The efficacy of the designed artifacts was demonstrated rigorously by means of six experiments and a simulator of real industrial production processes. N2 - Die vorliegende Arbeit addressiert das Geschäftsproblem von ineffizienten Prozessen, unpräzisen Prozessanalysen und -simulationen sowie untransparenten künstlichen neuronalen Netzwerken, indem ein Modellierungskonzept zum Neuronalen Modellieren konstruiert wird. Dieses neuartige Konzept des Neuronalen Modellierens (CoNM) fungiert als flexibler und effizienter Ansatz zum Modellieren, Simulieren und Optimieren von Prozessen mit Hilfe von neuronalen Netzwerken und wird mittels einer Modellierungssprache, dessen mathematischen Formalisierung und technischen Substanziierung sowie einer Sammlung von neuartigen Subartefakten beschrieben. In der Verwendung derer Implementierung als CoNM-Werkzeuge können somit neue Arten einer Neuronalen-Prozess-Modellierung (NPM), Neuronalen-Prozess-Simulation (NPS) sowie Neuronalen-Prozess-Optimierung (NPO) realisiert werden. Die Wirksamkeit der erstellten Artefakte wurde anhand von sechs Experimenten demonstriert sowie in einem Simulator in realen Produktionsprozessen gezeigt. T2 - Konzept des Neuronalen Modellierens KW - Deep Learning KW - Artificial Neuronal Network KW - Explainability KW - Interpretability KW - Business Process KW - Simulation KW - Optimization KW - Knowledge Management KW - Process Management KW - Modeling KW - Process KW - Knowledge KW - Learning KW - Enterprise Architecture KW - Industry 4.0 KW - Künstliche Neuronale Netzwerke KW - Erklärbarkeit KW - Interpretierbarkeit KW - Geschäftsprozess KW - Simulation KW - Optimierung KW - Wissensmanagement KW - Prozessmanagement KW - Modellierung KW - Prozess KW - Wissen KW - Lernen KW - Enterprise Architecture KW - Industrie 4.0 Y1 - 2021 ER - TY - THES A1 - Ellenbeck, Saskia T1 - Zwischen Modellierung und Stakeholderbeteiligung - Wissensproduktion in der Energiewendeforschung N2 - Die Dekarbonisierung des Energiesystems ist Teil der international im Rahmen des Pariser Klimaabkommens beschlossenen CO2-Minderungsstrategie zur Bekämpfung des Klimawandels. Nach den Verhandlungen und Beschlüssen der Klimaziele stehen politische Entscheider weltweit nun vor der Frage, wie sie diese erreichen können. Dies produziert eine hohe politische Nachfrage nach Wissen um die direkten und indirekten Effekte verschiedener Instrumente und potentiellen Entwicklungspfade einer Energiewende. Dieser gesellschaftliche Bedarf an wissenschaftlichen Antworten zu Lösungsoptionen wurde im Rahmen einer Klimafolgenforschung, genauer einer Klimapolitikfolgenforschung, aufgenommen. Der relativ neue Zweig einer Energiewendeforschung hat sich weltweit entwickelt, steht dabei allerdings vor der doppelten Herausforderung: Erstens befindet sich das Objekt der Forschung nicht im luftleeren Raum, sondern innerhalb ökonomischer, sozialer und politischer Zusammenhänge, hier gesellschaftliche Einbettung genannt. Denn die Frage, wie die Energiewende erreicht werden kann, wird auch außerhalb der Wissenschaft debattiert und stellt damit ein Aushandlungsfeld unterschiedlicher Interessen und Narrative dar. Zweitens befindet sich das zu untersuchende Objekt in der Zukunft, hier unter dem Terminus des strukturellen Nicht-Wissens zusammengefasst. Diese beiden Bedingungen führen dazu, dass konventionelle Methoden der empirischen Sozialforschung nicht greifen und eine Öffnung und Transformation der Wissenschaft in Hinblick auf neue Methoden vonnöten ist (Nowotny 2001, Ravetz 2006, Schneidewind 2013). In dieser Arbeit untersuche ich zwei Möglichkeiten, wie mit der Herausforderung, Wissen unter der Bedingung des strukturellen Nicht-Wissens und der gesellschaftlichen Einbettung zu produzieren, in der Energiewendeforschung umgegangen wird. Einerseits wird dies durch die Einbeziehung von Stakeholdern, also nicht-wissenschaftlicher Akteure, in den Forschungsprozess getan. Andererseits ist die Nutzung von komplexen ökonometrischen Modellen zur Berechnung von Implikationen und energiewirtschaftlichen Entwicklungspfaden zu einem zentralen Mittel der Wissensgenerierung in der Energiewendeforschung avanciert. Damit wird der als Problem verstandenen strukturellen Bedingung des Nicht-Wissens insofern begegnet, als dass die Ergebnisse von Stakeholder-Involvement und von Modellierungsarbeiten zweifelsohne neues Wissen zur Verfügung stellen. Uneinigkeit besteht jedoch darin, worüber dieses Wissen etwas aussagt: Sind es Interessen oder legitime Perspektiven, die Stakeholder in den Forschungsprozess einbringen und sind Modelle vereinfachte Darstellungen der Welt oder sind sie Ausdruck der Vorstellung des Modellierers? KW - Wissenssoziologie KW - Modellierung KW - Energiesysteme KW - Stakeholder Y1 - 2023 ER -