TY - JOUR A1 - Kotz, Maximilian A1 - Wenz, Leonie A1 - Stechemesser, Annika A1 - Kalkuhl, Matthias A1 - Levermann, Anders T1 - Day-to-day temperature variability reduces economic growth JF - Nature climate change N2 - Elevated annual average temperature has been found to impact macro-economic growth. However, various fundamental elements of the economy are affected by deviations of daily temperature from seasonal expectations which are not well reflected in annual averages. Here we show that increases in seasonally adjusted day-to-day temperature variability reduce macro-economic growth independent of and in addition to changes in annual average temperature. Combining observed day-to-day temperature variability with subnational economic data for 1,537 regions worldwide over 40 years in fixed-effects panel models, we find that an extra degree of variability results in a five percentage-point reduction in regional growth rates on average. The impact of day-to-day variability is modulated by seasonal temperature difference and income, resulting in highest vulnerability in low-latitude, low-income regions (12 percentage-point reduction). These findings illuminate a new, global-impact channel in the climate–economy relationship that demands a more comprehensive assessment in both climate and integrated assessment models. KW - Climate change KW - Climate-change impacts KW - Economics KW - Environmental economics KW - Environmental impact Y1 - 2021 U6 - https://doi.org/10.1038/s41558-020-00985-5 SN - 1758-678X SN - 1758-6798 VL - 11 IS - 4 SP - 319 EP - 325 PB - Nature Publishing Group CY - London ER - TY - JOUR A1 - Lawrence, Mark A1 - Schäfer, Stefan A1 - Muri, Helene A1 - Scott, Vivian A1 - Oschlies, Andreas A1 - Vaughan, Naomi E. A1 - Boucher, Olivier A1 - Schmidt, Hauke A1 - Haywood, Jim A1 - Scheffran, Jürgen T1 - Evaluating climate geoengineering proposals in the context of the Paris Agreement temperature goals JF - Nature Communications N2 - Current mitigation efforts and existing future commitments are inadequate to accomplish the Paris Agreement temperature goals. In light of this, research and debate are intensifying on the possibilities of additionally employing proposed climate geoengineering technologies, either through atmospheric carbon dioxide removal or farther-reaching interventions altering the Earth’s radiative energy budget. Although research indicates that several techniques may eventually have the physical potential to contribute to limiting climate change, all are in early stages of development, involve substantial uncertainties and risks, and raise ethical and governance dilemmas. Based on present knowledge, climate geoengineering techniques cannot be relied on to significantly contribute to meeting the Paris Agreement temperature goals. KW - Atmospheric chemistry KW - Atmospheric dynamics KW - Atmospheric science KW - Climate change KW - Environmental impact Y1 - 2018 U6 - https://doi.org/10.1038/s41467-018-05938-3 SN - 2041-1723 VL - 9 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Veh, Georg A1 - Korup, Oliver A1 - von Specht, Sebastian A1 - Rößner, Sigrid A1 - Walz, Ariane T1 - Unchanged frequency of moraine-dammed glacial lake outburst floods in the Himalaya JF - Nature climate change N2 - Shrinking glaciers in the Hindu Kush-Karakoram-Himalaya-Nyainqentanglha (HKKHN) region have formed several thousand moraine-dammed glacial lakes(1-3), some of these having grown rapidly in past decades(3,4). This growth may promote more frequent and potentially destructive glacial lake outburst floods (GLOFs)(5-7). Testing this hypothesis, however, is confounded by incomplete databases of the few reliable, though selective, case studies. Here we present a consistent Himalayan GLOF inventory derived automatically from all available Landsat imagery since the late 1980s. We more than double the known GLOF count and identify the southern Himalayas as a hotspot region, compared to the more rarely affected Hindu Kush-Karakoram ranges. Nevertheless, the average annual frequency of 1.3 GLOFs has no credible posterior trend despite reported increases in glacial lake areas in most of the HKKHN3,8, so that GLOF activity per unit lake area has decreased since the late 1980s. We conclude that learning more about the frequency and magnitude of outburst triggers, rather than focusing solely on rapidly growing glacial lakes, might improve the appraisal of GLOF hazards. KW - Climate change KW - Cryospheric science KW - Environmental impact KW - Geomorphology Y1 - 2019 U6 - https://doi.org/10.1038/s41558-019-0437-5 SN - 1758-678X SN - 1758-6798 VL - 9 IS - 5 SP - 379 EP - 383 PB - Nature Publ. Group CY - London ER -