TY - JOUR A1 - Scherer, Ulrike A1 - Tiedemann, Ralph A1 - Schlupp, Ingo T1 - Male size, not female preferences influence female reproductive success in a poeciliid fish (Poecilia latipinna) BT - a combined behavioural/genetic approach JF - BMC Research Notes N2 - Objective We investigated the potential role of indirect benefits for female mate preferences in a highly promiscuous species of live-bearing fishes, the sailfin molly Poecilia latipinna using an integrative approach that combines methods from animal behavior, life-history evolution, and genetics. Males of this species solely contribute sperm for reproduction, and consequently females do not receive any direct benefits. Despite this, females typically show clear mate preferences. It has been suggested that females can increase their reproductive success through indirect benefits from choosing males of higher quality. Results Although preferences for large body size have been recorded as an honest signal for genetic quality, this particular study resulted in female preference being unaffected by male body size. Nonetheless, larger males did sire more offspring, but with no effect on offspring quality. This study presents a methodical innovation by combining preference testing with life history measurements—such as the determination of the dry weight of fish embryos—and paternity analyses on single fish embryos. KW - Fitness KW - Life history KW - Mate choice KW - Microsatellite analysis KW - Offspring weight KW - Paternity analysis KW - Sailfin molly KW - Sexual selection Y1 - 2018 U6 - https://doi.org/10.1186/s13104-018-3487-2 SN - 1756-0500 VL - 11 IS - 364 SP - 1 EP - 5 PB - Biomed Central CY - London ER - TY - JOUR A1 - Eccard, Jana A1 - Herde, Antje T1 - Seasonal variation in the behaviour of a short-lived rodent JF - BMC ecology N2 - Background: Short lived, iteroparous animals in seasonal environments experience variable social and environmental conditions over their lifetime. Animals can be divided into those with a "young-of-the-year" life history (YY, reproducing and dying in the summer of birth) and an "overwinter" life history (OW, overwintering in a subadult state before reproducing next spring). We investigated how behavioural patterns across the population were affected by season and sex, and whether variation in behaviour reflects the variation in life history patterns of each season. Applications of pace-of-life (POL) theory would suggest that long-lived OW animals are shyer in order to increase survival, and YY are bolder in order to increase reproduction. Therefore, we expected that in winter and spring samples, when only OW can be sampled, the animals should be shyer than in summer and autumn, when both OW and YY animals can be sampled. We studied common vole (Microtus arvalis) populations, which express typical, intra-annual density fluctuation. We captured a total of 492 voles at different months over 3 years and examined boldness and activity level with two standardised behavioural experiments. Results: Behavioural variables of the two tests were correlated with each other. Boldness, measured as short latencies in both tests, was extremely high in spring compared to other seasons. Activity level was highest in spring and summer, and higher in males than in females. Conclusion: Being bold in laboratory tests may translate into higher risk-taking in nature by being more mobile while seeking out partners or valuable territories. Possible explanations include asset-protection, with OW animals being rather old with low residual reproductive value in spring. Therefore, OW may take higher risks during this season. Offspring born in spring encounter a lower population density and may have higher reproductive value than offspring of later cohorts. A constant connection between life history and animal personality, as suggested by the POL theory, however, was not found. Nevertheless, correlations of traits suggest the existence of animal personalities. In conclusion, complex patterns of population dynamics, seasonal variation in life histories, and variability of behaviour due to asset-protection may cause complex seasonal behavioural dynamics in a population. KW - Animal personalities KW - Boldness KW - Life history KW - Pace-of-life KW - POL KW - Phenotypic plasticity KW - Common vole Y1 - 2013 U6 - https://doi.org/10.1186/1472-6785-13-43 SN - 1472-6785 VL - 13 IS - 22 PB - BioMed Central CY - London ER - TY - JOUR A1 - Reinhard, Sandy A1 - Renner, Sandra A1 - Kupfer, Alexander T1 - Sexual dimorphism and age of Mediterranean salamanders JF - Zoology N2 - We analysed sexual size dimorphism (SSD) for two Mediterranean species of the "true" salamander clade possessing distinct life histories (Salamandra algira and Mertensiella caucasica) and equilibrated the morphometric approach to individual age by using skeletochronology. For species that have a short breeding season and live at high altitudes, such as Mediterranean amphibians, the fecundity advantage hypothesis predicts female-biased SSD to maximise reproductive success. Our results showed no SSD in either species; however, morphometric data indicated a male-biased dimorphism in limb (arm and leg) dimensions in both species when compared to body size. Limb dimorphisms are likely related to the particular mating system, which involves an amplexus during spermatophore transfer. Arm length appeared sexually dimorphic during ontogeny both in viviparous Salamandra algira and oviparous Mertensiella caucasica. A review on SSD indicated monomorphy of body size as a common lineage-specific pattern among the "true" salamander clade, but also the common presence of other traits such as sexually dimorphic limb proportions. (C) 2014 Elsevier GmbH. All rights reserved. KW - Amphibia KW - Salamanders KW - Life history KW - Sexual dimorphism KW - Skeletochronology Y1 - 2015 U6 - https://doi.org/10.1016/j.zool.2014.08.002 SN - 0944-2006 VL - 118 IS - 1 SP - 19 EP - 26 PB - Elsevier CY - Jena ER - TY - JOUR A1 - Lehmann, Andreas A1 - Eccard, Jana A1 - Scheffler, Christiane A1 - Kurvers, Ralf H. J. M. A1 - Dammhahn, Melanie T1 - Under pressure: human adolescents express a pace-of-life syndrome JF - Behavioral ecology and sociobiology N2 - The pace-of-life syndrome (POLS) hypothesis posits that life-history characteristics, among individual differences in behavior, and physiological traits have coevolved in response to environmental conditions. This hypothesis has generated much research interest because it provides testable predictions concerning the association between the slow-fast life-history continuum and behavioral and physiological traits. Although humans are among the most well-studied species and similar concepts exist in the human literature, the POLS hypothesis has not yet been directly applied to humans. Therefore, we aimed to (i) test predicted relationships between life history, physiology, and behavior in a human population and (ii) better integrate the POLS hypothesis with other similar concepts. Using data of a representative sample of German adolescents, we extracted maturation status for girls (menarche, n = 791) and boys (voice break, n = 486), and a set of health-related risk-taking behaviors and cardiovascular parameters. Maturation status and health-related risk behavior as well as maturation status and cardiovascular physiology covaried in boys and girls. Fast maturing boys and girls had higher blood pressure and expressed more risk-taking behavior than same-aged slow maturing boys and girls, supporting general predictions of the POLS hypothesis. Only some physiological and behavioral traits were positively correlated, suggesting that behavioral and physiological traits might mediate life-history trade-offs differently. Moreover, some aspects of POLS were sex-specific. Overall, the POLS hypothesis shares many similarities with other conceptual frameworks from the human literature and these concepts should be united more thoroughly to stimulate the study of POLS in humans and other animals. Significance statement The pace-of-life syndrome (POLS) hypothesis suggests that life history, behavioral and physiological traits have coevolved in response to environmental conditions. Here, we tested this link in a representative sample of German adolescents, using data from a large health survey (the KIGGs study) containing information on individual age and state of maturity for girls and boys, and a set of health-related risk-taking behaviors and cardiovascular parameters. We found that fast maturing girls and boys had overall higher blood pressure and expressed more risk-taking behavior than same-aged slow maturing girls and boys. Only some behavioral and physiological traits were positively correlated, suggesting that behavioral and physiological traits might mediate life-history trade-offs differently and not necessarily form a syndrome. Our results demonstrate a general link between life history, physiological and behavioral traits in humans, while simultaneously highlighting a more complex and rich set of relationships, since not all relationships followed predictions by the POLS hypothesis. KW - Adolescence KW - Humans KW - Life history KW - Menarche KW - Physiology KW - Risk taking Y1 - 2018 U6 - https://doi.org/10.1007/s00265-018-2465-y SN - 0340-5443 SN - 1432-0762 VL - 72 IS - 3 PB - Springer CY - New York ER -