TY - JOUR A1 - Schneeberger, Karin A1 - Schulze, Michael A1 - Scheffler, Ingo A1 - Caspers, Barbara A. T1 - Evidence of female preference for odor of distant over local males in a bat with female dispersal JF - Behavioral ecology : the official journal of the International Society for Behavioral Ecology N2 - Geographic variation of sexually selected male traits is common in animals. Female choice also varies geographically and several studies found female preference for local males, which is assumed to lead to local adaptation and, therefore, increases fitness. As females are the nondispersing sex in most mammalian taxa, this preference for local males might be explained by the learning of male characteristics. Studies on the preference of females in female-dispersing species are lacking so far. To find out whether such females would also show preferences for local males, we conducted a study on greater sac-winged bats (Saccopteryx bilineata), a species where females disperse and males stay in their natal colony. Male greater sac-winged bats possess a wing pouch that is filled with odoriferous secretion and fanned toward females during courtship display. In a combination of chemical analysis and behavioral preference tests, we analyzed whether the composition of wing sac secretion varies between two geographically distinct populations (300 km), and whether females show a preference for local or distant male scent. Using gas chromatography, we found significant differences in the composition of the wing sac odors between the two geographically distinct populations. In addition, the behavioral preference experiments revealed that females of both populations preferred the scent of geographically distant males over local males. The wing sac odor might thus be used to guarantee optimal outbreeding when dispersing to a new colony. This is-to our knowledge-the first study on odor preference of females of a species with female-biased dispersal. KW - bats KW - dispersal KW - female preference KW - male philopatry KW - odor KW - olfaction Y1 - 2021 U6 - https://doi.org/10.1093/beheco/arab003 SN - 1045-2249 SN - 1465-7279 VL - 32 IS - 4 SP - 657 EP - 661 PB - Oxford University Press CY - Oxford ER - TY - JOUR A1 - Pavesi, Laura A1 - Ketmaier, Valerio T1 - Patterns of genetics structuring and levels of differentiation in supralittoral talitrid amphipods - an overview JF - Crustaceana : international journal of crustacean research N2 - Talitrids are the only family within the order Amphipoda to have colonised supralittoral and terrestrial environments. They live in a variety of settings, from sandy to rocky and pebble beaches, to river and lake banks, and to leaf litter and caves. A common feature is the absence of a planktonic larval stage to facilitate passive dispersal over long-distances. However, some species have broad distributions. Genetic studies over the past 25 years have tried to explain this apparent contradiction by assessing patterns of species genetic structuring on different geographical scales. Here, we review the molecular studies available to date and focus on the population genetics of talitrids. Most of these studies considered populations in the Mediterranean area, but also along the Atlantic coast and in Canary Island caves. From this review, the group emerges as a potential model to understand processes of dispersal and divergence in non-highly-vagile supralittoral organisms. At the same time, studies on these issues are still too restricted geographically: a worldwide scale including different regions would provide us with a better perspective on these problems. KW - Supralittoral talitrids KW - dispersal KW - gene flow KW - allozymes KW - mitochondrial DNA KW - microsatellites Y1 - 2013 U6 - https://doi.org/10.1163/15685403-00003212 SN - 0011-216X VL - 86 IS - 7-8 SP - 890 EP - 907 PB - Brill CY - Leiden ER - TY - GEN A1 - Nathan, Ran A1 - Horvitz, Nir A1 - He, Yanping A1 - Kuparinen, Anna A1 - Schurr, Frank Martin A1 - Katul, Gabriel G. T1 - Spread of North American wind-dispersed trees in future environments T2 - Ecology letters N2 - P>Despite ample research, understanding plant spread and predicting their ability to track projected climate changes remain a formidable challenge to be confronted. We modelled the spread of North American wind-dispersed trees in current and future (c. 2060) conditions, accounting for variation in 10 key dispersal, demographic and environmental factors affecting population spread. Predicted spread rates vary substantially among 12 study species, primarily due to inter-specific variation in maturation age, fecundity and seed terminal velocity. Future spread is predicted to be faster if atmospheric CO2 enrichment would increase fecundity and advance maturation, irrespective of the projected changes in mean surface windspeed. Yet, for only a few species, predicted wind-driven spread will match future climate changes, conditioned on seed abscission occurring only in strong winds and environmental conditions favouring high survival of the farthest-dispersed seeds. Because such conditions are unlikely, North American wind-dispersed trees are expected to lag behind the projected climate range shift. KW - Climate change KW - demography KW - dispersal KW - fat-tailed dispersal kernels KW - forecasting KW - forests KW - invasion by extremes KW - long-distance dispersal KW - mechanistic models KW - plant migration KW - population spread KW - range expansion KW - survival KW - wind dispersal Y1 - 2011 U6 - https://doi.org/10.1111/j.1461-0248.2010.01573.x SN - 1461-023X VL - 14 IS - 3 SP - 211 EP - 219 PB - Wiley-Blackwell CY - Malden ER - TY - JOUR A1 - Marion, Glenn A1 - McInerny, Greg J. A1 - Pagel, Jörn A1 - Catterall, Stephen A1 - Cook, Alex R. A1 - Hartig, Florian A1 - O&rsquo, A1 - Hara, Robert B. T1 - Parameter and uncertainty estimation for process-oriented population and distribution models: data, statistics and the niche JF - JOURNAL OF BIOGEOGRAPHY N2 - The spatial distribution of a species is determined by dynamic processes such as reproduction, mortality and dispersal. Conventional static species distribution models (SDMs) do not incorporate these processes explicitly. This limits their applicability, particularly for non-equilibrium situations such as invasions or climate change. In this paper we show how dynamic SDMs can be formulated and fitted to data within a Bayesian framework. Our focus is on discrete state-space Markov process models which provide a flexible framework to account for stochasticity in key demographic processes, including dispersal, growth and competition. We show how to construct likelihood functions for such models (both discrete and continuous time versions) and how these can be combined with suitable observation models to conduct Bayesian parameter inference using computational techniques such as Markov chain Monte Carlo. We illustrate the current state-of-the-art with three contrasting examples using both simulated and empirical data. The use of simulated data allows the robustness of the methods to be tested with respect to deficiencies in both data and model. These examples show how mechanistic understanding of the processes that determine distribution and abundance can be combined with different sources of information at a range of spatial and temporal scales. Application of such techniques will enable more reliable inference and projections, e.g. under future climate change scenarios than is possible with purely correlative approaches. Conversely, confronting such process-oriented niche models with abundance and distribution data will test current understanding and may ultimately feedback to improve underlying ecological theory. KW - Bayesian inference KW - demography KW - dispersal KW - dynamic models KW - dynamic range models KW - establishment KW - global change KW - niche models KW - species distribution models Y1 - 2012 U6 - https://doi.org/10.1111/j.1365-2699.2012.02772.x SN - 0305-0270 SN - 1365-2699 VL - 39 IS - 12 SP - 2225 EP - 2239 PB - WILEY-BLACKWELL CY - HOBOKEN ER - TY - JOUR A1 - Malchow, Anne-Kathleen A1 - Bocedi, Greta A1 - Palmer, Stephen C. F. A1 - Travis, Justin M. J. A1 - Zurell, Damaris T1 - RangeShiftR: an R package for individual-based simulation of spatial eco-evolutionary dynamics and speciesu0027 responses to environmental changes JF - Ecography N2 - Reliably modelling the demographic and distributional responses of a species to environmental changes can be crucial for successful conservation and management planning. Process-based models have the potential to achieve this goal, but so far they remain underused for predictions of species' distributions. Individual-based models offer the additional capability to model inter-individual variation and evolutionary dynamics and thus capture adaptive responses to environmental change. We present RangeShiftR, an R implementation of a flexible individual-based modelling platform which simulates eco-evolutionary dynamics in a spatially explicit way. The package provides flexible and fast simulations by making the software RangeShifter available for the widely used statistical programming platform R. The package features additional auxiliary functions to support model specification and analysis of results. We provide an outline of the package's functionality, describe the underlying model structure with its main components and present a short example. RangeShiftR offers substantial model complexity, especially for the demographic and dispersal processes. It comes with elaborate tutorials and comprehensive documentation to facilitate learning the software and provide help at all levels. As the core code is implemented in C++, the computations are fast. The complete source code is published under a public licence, making adaptations and contributions feasible. The RangeShiftR package facilitates the application of individual-based and mechanistic modelling to eco-evolutionary questions by operating a flexible and powerful simulation model from R. It allows effortless interoperation with existing packages to create streamlined workflows that can include data preparation, integrated model specification and results analysis. Moreover, the implementation in R strengthens the potential for coupling RangeShiftR with other models. KW - connectivity KW - conservation KW - dispersal KW - evolution KW - population dynamics KW - range dynamics Y1 - 2021 SN - 1600-0587 VL - 44 IS - 10 PB - John Wiley & Sons, Inc. CY - New Jersey ER - TY - JOUR A1 - Malchow, Anne-Kathleen A1 - Bocedi, Greta A1 - Palmer, Stephen C. F. A1 - Travis, Justin M. J. A1 - Zurell, Damaris T1 - RangeShiftR BT - an R package for individual-based simulation of spatial changes JF - Ecography : pattern and diversity in ecology / Nordic Ecologic Society Oikos N2 - Reliably modelling the demographic and distributional responses of a species to environmental changes can be crucial for successful conservation and management planning. Process-based models have the potential to achieve this goal, but so far they remain underused for predictions of species' distributions. Individual-based models offer the additional capability to model inter-individual variation and evolutionary dynamics and thus capture adaptive responses to environmental change. We present RangeShiftR, an R implementation of a flexible individual-based modelling platform which simulates eco-evolutionary dynamics in a spatially explicit way. The package provides flexible and fast simulations by making the software RangeShifter available for the widely used statistical programming platform R. The package features additional auxiliary functions to support model specification and analysis of results. We provide an outline of the package's functionality, describe the underlying model structure with its main components and present a short example. RangeShiftR offers substantial model complexity, especially for the demographic and dispersal processes. It comes with elaborate tutorials and comprehensive documentation to facilitate learning the software and provide help at all levels. As the core code is implemented in C++, the computations are fast. The complete source code is published under a public licence, making adaptations and contributions feasible. The RangeShiftR package facilitates the application of individual-based and mechanistic modelling to eco-evolutionary questions by operating a flexible and powerful simulation model from R. It allows effortless interoperation with existing packages to create streamlined workflows that can include data preparation, integrated model specification and results analysis. Moreover, the implementation in R strengthens the potential for coupling RangeShiftR with other models. KW - connectivity KW - conservation KW - dispersal KW - evolution KW - population dynamics KW - range dynamics Y1 - 2021 U6 - https://doi.org/10.1111/ecog.05689 SN - 1600-0587 VL - 44 IS - 10 SP - 1443 EP - 1452 PB - Wiley-Blackwell CY - Oxford [u.a.] ER - TY - JOUR A1 - Lozada Gobilard, Sissi Donna A1 - Stang, Susanne A1 - Pirhofer-Walzl, Karin A1 - Kalettka, Thomas A1 - Heinken, Thilo A1 - Schröder, Boris A1 - Eccard, Jana A1 - Joshi, Jasmin Radha T1 - Environmental filtering predicts plant-community trait distribution and diversity BT - Kettle holes as models of meta-community systems JF - Ecology and evolution N2 - Meta-communities of habitat islands may be essential to maintain biodiversity in anthropogenic landscapes allowing rescue effects in local habitat patches. To understand the species-assembly mechanisms and dynamics of such ecosystems, it is important to test how local plant-community diversity and composition is affected by spatial isolation and hence by dispersal limitation and local environmental conditions acting as filters for local species sorting.We used a system of 46 small wetlands (kettle holes)natural small-scale freshwater habitats rarely considered in nature conservation policiesembedded in an intensively managed agricultural matrix in northern Germany. We compared two types of kettle holes with distinct topographies (flat-sloped, ephemeral, frequently plowed kettle holes vs. steep-sloped, more permanent ones) and determined 254 vascular plant species within these ecosystems, as well as plant functional traits and nearest neighbor distances to other kettle holes.Differences in alpha and beta diversity between steep permanent compared with ephemeral flat kettle holes were mainly explained by species sorting and niche processes and mass effect processes in ephemeral flat kettle holes. The plant-community composition as well as the community trait distribution in terms of life span, breeding system, dispersal ability, and longevity of seed banks significantly differed between the two habitat types. Flat ephemeral kettle holes held a higher percentage of non-perennial plants with a more persistent seed bank, less obligate outbreeders and more species with seed dispersal abilities via animal vectors compared with steep-sloped, more permanent kettle holes that had a higher percentage of wind-dispersed species. In the flat kettle holes, plant-species richness was negatively correlated with the degree of isolation, whereas no such pattern was found for the permanent kettle holes.Synthesis: Environment acts as filter shaping plant diversity (alpha and beta) and plant-community trait distribution between steep permanent compared with ephemeral flat kettle holes supporting species sorting and niche mechanisms as expected, but we identified a mass effect in ephemeral kettle holes only. Flat ephemeral kettle holes can be regarded as meta-ecosystems that strongly depend on seed dispersal and recruitment from a seed bank, whereas neighboring permanent kettle holes have a more stable local species diversity. KW - biodiversity KW - dispersal KW - disturbance KW - landscape diversity KW - life-history traits KW - plant diversity KW - seed bank KW - species assembly KW - wetland vegetation Y1 - 2019 U6 - https://doi.org/10.1002/ece3.4883 SN - 2045-7758 VL - 9 IS - 4 SP - 1898 EP - 1910 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Lozada Gobilard, Sissi Donna A1 - Stang, Susanne A1 - Pirhofer-Walzl, Karin A1 - Kalettka, Thomas A1 - Heinken, Thilo A1 - Schröder, Boris A1 - Eccard, Jana A1 - Jasmin Radha, Jasmin T1 - Environmental filtering predicts plant‐community trait distribution and diversity BT - Kettle holes as models of meta‐community systems JF - Ecology and Evolution N2 - Meta‐communities of habitat islands may be essential to maintain biodiversity in anthropogenic landscapes allowing rescue effects in local habitat patches. To understand the species‐assembly mechanisms and dynamics of such ecosystems, it is important to test how local plant‐community diversity and composition is affected by spatial isolation and hence by dispersal limitation and local environmental conditions acting as filters for local species sorting. We used a system of 46 small wetlands (kettle holes)—natural small‐scale freshwater habitats rarely considered in nature conservation policies—embedded in an intensively managed agricultural matrix in northern Germany. We compared two types of kettle holes with distinct topographies (flatsloped, ephemeral, frequently plowed kettle holes vs. steep‐sloped, more permanent ones) and determined 254 vascular plant species within these ecosystems, as well as plant functional traits and nearest neighbor distances to other kettle holes. Differences in alpha and beta diversity between steep permanent compared with ephemeral flat kettle holes were mainly explained by species sorting and niche processes and mass effect processes in ephemeral flat kettle holes. The plant‐community composition as well as the community trait distribution in terms of life span, breeding system, dispersal ability, and longevity of seed banks significantly differed between the two habitat types. Flat ephemeral kettle holes held a higher percentage of non‐perennial plants with a more persistent seed bank, less obligate outbreeders and more species with seed dispersal abilities via animal vectors compared with steep‐sloped, more permanent kettle holes that had a higher percentage of wind‐dispersed species. In the flat kettle holes, plant‐species richness was negatively correlated with the degree of isolation, whereas no such pattern was found for the permanent kettle holes. Synthesis: Environment acts as filter shaping plant diversity (alpha and beta) and plant‐community trait distribution between steep permanent compared with ephemeral flat kettle holes supporting species sorting and niche mechanisms as expected, but we identified a mass effect in ephemeral kettle holes only. Flat ephemeral kettle holes can be regarded as meta‐ecosystems that strongly depend on seed dispersal and recruitment from a seed bank, whereas neighboring permanent kettle holes have a more stable local species diversity. KW - biodiversity KW - dispersal KW - disturbance KW - landscape diversity KW - life‐history traits KW - plant diversity KW - seed bank KW - species assembly KW - wetland vegetation Y1 - 2019 U6 - https://doi.org/10.1002/ece3.4883 SN - 2045-7758 PB - John Wiley & Sons, Inc. CY - Hoboken ER - TY - JOUR A1 - Kiemel, Katrin A1 - Weithoff, Guntram A1 - Tiedemann, Ralph T1 - DNA metabarcoding reveals impact of local recruitment, dispersal, and hydroperiod on assembly of a zooplankton metacommunity JF - Molecular ecology N2 - Understanding the environmental impact on the assembly of local communities in relation to their spatial and temporal connectivity is still a challenge in metacommunity ecology. This study aims to unravel underlying metacommunity processes and environmental factors that result in observed zooplankton communities. Unlike most metacommunity studies, we jointly examine active and dormant zooplankton communities using a DNA metabarcoding approach to overcome limitations of morphological species identification. We applied two-fragment (COI and 18S) metabarcoding to monitor communities of 24 kettle holes over a two-year period to unravel (i) spatial and temporal connectivity of the communities, (ii) environmental factors influencing local communities, and (iii) dominant underlying metacommunity processes in this system. We found a strong separation of zooplankton communities from kettle holes of different hydroperiods (degree of permanency) throughout the season, while the community composition within single kettle holes did not differ between years. Species richness was primarily dependent on pH and permanency, while species diversity (Shannon Index) was influenced by kettle hole location. Community composition was impacted by kettle hole size and surrounding field crops. Environmental processes dominated temporal and spatial processes. Sediment communities showed a different composition compared to water samples but did not differ between ephemeral and permanent kettle holes. Our results suggest that communities are mainly structured by environmental filtering based on pH, kettle hole size, surrounding field crops, and permanency. Environmental filtering based on specific conditions in individual kettle holes seems to be the dominant process in community assembly in the studied zooplankton metacommunity. KW - bulk DNA KW - dispersal KW - DNA-metabarcoding KW - environmental filtering; KW - metacommunity KW - zooplankton Y1 - 2022 U6 - https://doi.org/10.1111/mec.16627 SN - 0962-1083 SN - 1365-294X VL - 32 IS - 23 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Gross, Thilo A1 - Allhoff, Korinna Theresa A1 - Blasius, Bernd A1 - Brose, Ulrich A1 - Drossel, Barbara A1 - Fahimipour, Ashkaan K. A1 - Guill, Christian A1 - Yeakel, Justin D. A1 - Zeng, Fanqi T1 - Modern models of trophic meta-communities JF - Philosophical transactions of the Royal Society of London : B, Biological sciences N2 - Dispersal and foodweb dynamics have long been studied in separate models. However, over the past decades, it has become abundantly clear that there are intricate interactions between local dynamics and spatial patterns. Trophic meta-communities, i.e. meta-foodwebs, are very complex systems that exhibit complex and often counterintuitive dynamics. Over the past decade, a broad range of modelling approaches have been used to study these systems. In this paper, we review these approaches and the insights that they have revealed. We focus particularly on recent papers that study trophic interactions in spatially extensive settings and highlight the common themes that emerged in different models. There is overwhelming evidence that dispersal (and particularly intermediate levels of dispersal) benefits the maintenance of biodiversity in several different ways. Moreover, some insights have been gained into the effect of different habitat topologies, but these results also show that the exact relationships are much more complex than previously thought, highlighting the need for further research in this area. This article is part of the theme issue 'Integrative research perspectives on marine conservation'. KW - dispersal KW - meta-community KW - foodweb Y1 - 2020 U6 - https://doi.org/10.1098/rstb.2019.0455 SN - 0962-8436 SN - 1471-2970 VL - 375 IS - 1814 PB - Royal Society CY - London ER -