TY - JOUR A1 - Werner, Klaus A1 - Reindl, Nicole A1 - Dorsch, Matti A1 - Geier, Stephan A1 - Munari, Ulisse A1 - Raddi, Roberto T1 - Non-local thermodynamic equilibrium spectral analysis of five hot, hydrogen-deficient pre-white dwarfs JF - Astronomy and Astrophysics N2 - Hot, compact, hydrogen-deficient pre-white dwarfs (pre-WDs) with effective temperatures of Teff > 70 000 K and a surface gravity of 5.0 < logg < 7.0 are rather rare objects despite recent and ongoing surveys. It is believed that they are the outcome of either single star evolution (late helium-shell flash or late helium-core flash) or binary star evolution (double WD merger). Their study is interesting because the surface elemental abundances reflect the physics of thermonuclear flashes and merger events. Spectroscopically they are divided in three different classes, namely PG1159, O(He), or He-sdO. We present a spectroscopic analysis of five such stars that turned out to have atmospheric parameters in the range Teff = 70 000-80 000 K and logg = 5.2-6.3. The three investigated He-sdOs have a relatively high hydrogen mass fraction (10%) that is unexplained by both single (He core flash) and binary evolution (He-WD merger) scenarios. The O(He) star JL 9 is probably a binary helium-WD merger, but its hydrogen content (6%) is also at odds with merger models. We found that RL 104 is the 'coolest' (Teff = 80 000 K) member of the PG1159 class in a pre-WD stage. Its optical spectrum is remarkable because it exhibits C※ IV lines involving Rydberg states with principal quantum numbers up to n = 22. Its rather low mass (0.48-0.02+0.03 M·) is difficult to reconcile with the common evolutionary scenario for PG1159 stars due to it being the outcome of a (very) late He-shell flash. The same mass-problem faces a merger model of a close He-sdO plus CO WD binary that predicts PG1159-like abundances. Perhaps RL 104 originates from a very late He-shell flash in a CO/He WD formed by a merger of two low-mass He-WDs. KW - stars: atmospheres KW - stars: abundances KW - stars: evolution KW - subdwarfs KW - white dwarfs Y1 - 2022 U6 - https://doi.org/10.1051/0004-6361/202142397 SN - 0004-6361 SN - 1432-0746 VL - 658 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Schaffenroth, Veronika A1 - Pelisoli, Ingrid A1 - Barlow, Brad N. A1 - Geier, Stephan A1 - Kupfer, Thomas T1 - Hot subdwarfs in close binaries observed from space I. BT - orbital, atmospheric, and absolute parameters and the nature of their companions JF - Astronomy and astrophysics : an international weekly journal N2 - Context: About a third of the hot subdwarfs of spectral type B (sdBs), which are mostly core-helium-burning objects on the extreme horizontal branch, are found in close binaries with cool, low-mass stellar, substellar, or white dwarf companions. They can show light variations due to di fferent phenomena. Aims: Many hot subdwarfs now have space-based light curves with a high signal-to-noise ratio available. We used light curves from the Transiting Exoplanet Survey Satellite and the K2 space mission to look for more sdB binaries. Their light curves can be used to study the hot subdwarf primaries and their companions, and obtained orbital, atmospheric, and absolute parameters for those systems, when combined with other analysis methods. Methods: By classifying the light variations and combining these with the fit of the spectral energy distribution, the distance derived by the parallaxes obtained by Gaia, and the atmospheric parameters, mainly from the literature, we could derive the nature of the primaries and secondaries in 122 (75%) of the known sdB binaries and 82 newly found reflection e ffect systems. We derived absolute masses, radii, and luminosities for a total of 39 hot subdwarfs with cool, low-mass companions, as well 29 known and newly found sdBs with white dwarf companions. Results: The mass distribution of hot subdwarfs with cool, low-mass stellar and substellar companions, di ffers from those with white dwarf companions, implying they come from di fferent populations. By comparing the period and minimum companion mass distributions, we find that the reflection e ffect systems all have M dwarf or brown dwarf companions, and that there seem to be several di fferent populations of hot subdwarfs with white dwarf binaries - one with white dwarf minimum masses around 0.4 M-circle dot, one with longer periods and minimum companion masses up to 0.6 M-circle dot, and at the shortest period, another with white dwarf minimum masses around 0.8 M-circle dot. We also derive the first orbital period distribution for hot subdwarfs with cool, low-mass stellar or substellar systems selected from light variations instead of radial velocity variations. It shows a narrower period distribution, from 1.5 h to 35 h, compared to the distribution of hot subdwarfs with white dwarfs, which ranges from 1 h to 30 days. These period distributions can be used to constrain the previous common-envelope phase. KW - binaries: close KW - subdwarfs KW - white dwarfs KW - stars: late-type KW - stars: KW - horizontal-branch KW - stars: fundamental parameters Y1 - 2022 U6 - https://doi.org/10.1051/0004-6361/202244214 SN - 0004-6361 SN - 1432-0746 VL - 666 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Reindl, Nicole A1 - Schaffenroth, Veronika A1 - Filiz, Semih A1 - Geier, Stephan A1 - Pelisoli, Ingrid A1 - Kepler, Souza Oliveira T1 - Mysterious, variable, and extremely hot BT - White dwarfs showing ultra-high excitation lines: I. Photometric variability JF - Astronomy and astrophysics : an international weekly journal / European Southern Observatory (ESO) N2 - Context. About 10% of all stars exhibit absorption lines of ultra-highly excited (UHE) metals (e.g., O VIII) in their optical spectra when entering the white dwarf cooling sequence. This is something that has never been observed in any other astrophysical object, and poses a decades-long mystery in our understanding of the late stages of stellar evolution. The recent discovery of a UHE white dwarf that is both spectroscopically and photometrically variable led to the speculation that the UHE lines might be created in a shock-heated circumstellar magnetosphere. Aims. We aim to gain a better understanding of these mysterious objects by studying the photometric variability of the whole population of UHE white dwarfs, and white dwarfs showing only the He II line problem, as both phenomena are believed to be connected. Methods. We investigate (multi-band) light curves from several ground- and space-based surveys of all 16 currently known UHE white dwarfs (including one newly discovered) and eight white dwarfs that show only the He II line problem. Results. We find that 75(-13)(+8) % of the UHE white dwarfs, and 75(-19)(+9)% of the He II line problem white dwarfs are significantly photometrically variable, with periods ranging from 0.22 d to 2.93 d and amplitudes from a few tenths to a few hundredths of a magnitude. The high variability rate is in stark contrast to the variability rate amongst normal hot white dwarfs (we find 9(2)(+4)%), marking UHE and He II line problem white dwarfs as a new class of variable stars. The period distribution of our sample agrees with both the orbital period distribution of post-common-envelope binaries and the rotational period distribution of magnetic white dwarfs if we assume that the objects in our sample will spin-up as a consequence of further contraction. Conclusions. We find further evidence that UHE and He II line problem white dwarfs are indeed related, as concluded from their overlap in the Gaia HRD, similar photometric variability rates, light-curve shapes and amplitudes, and period distributions. The lack of increasing photometric amplitudes towards longer wavelengths, as well as the nondetection of optical emission lines arising from the highly irradiated face of a hypothetical secondary in the optical spectra of our stars, makes it seem unlikely that an irradiated late-type companion is the origin of the photometric variability. Instead, we believe that spots on the surfaces of these stars and/or geometrical effects of circumstellar material might be responsible. KW - white dwarfs KW - stars: variables: general KW - starspots KW - binaries: close Y1 - 2021 U6 - https://doi.org/10.1051/0004-6361/202140289 SN - 1432-0746 VL - 647 PB - EDP Sciences CY - Les Ulis ER -