TY - JOUR A1 - von Hippel, Barbara A1 - Stoof-Leichsenring, Kathleen R. A1 - Schulte, Luise A1 - Seeber, Peter Andreas A1 - Epp, Laura Saskia A1 - Biskaborn, Boris A1 - Diekmann, Bernhard A1 - Melles, Martin A1 - Pestryakova, Luidmila Agafyevna A1 - Herzschuh, Ulrike T1 - Long-term funguseplant covariation from multi-site sedimentary ancient DNA metabarcoding JF - Quaternary science reviews : the international multidisciplinary research and review journal N2 - Climate change has a major impact on arctic and boreal terrestrial ecosystems as warming leads to northward treeline shifts, inducing consequences for heterotrophic organisms associated with the plant taxa. To unravel ecological dependencies, we address how long-term climatic changes have shaped the co-occurrence of plants and fungi across selected sites in Siberia. We investigated sedimentary ancient DNA from five lakes spanning the last 47,000 years, using the ITS1 marker for fungi and the chloroplast P6 loop marker for vegetation metabarcoding. We obtained 706 unique fungal operational taxonomic units (OTUs) and 243 taxa for the plants. We show higher OTU numbers in dry forest tundra as well as boreal forests compared to wet southern tundra. The most abundant fungal taxa in our dataset are Pseudeurotiaceae, Mortierella, Sordariomyceta, Exophiala, Oidiodendron, Protoventuria, Candida vartiovaarae, Pseudeurotium, Gryganskiella fimbricystis, and Tricho-sporiella cerebriformis. The overall fungal composition is explained by the plant composition as revealed by redundancy analysis. The fungal functional groups show antagonistic relationships in their climate susceptibility. The advance of woody taxa in response to past warming led to an increase in the abun-dance of mycorrhizae, lichens, and parasites, while yeast and saprotroph distribution declined. We also show co-occurrences between Salicaceae, Larix, and Alnus and their associated pathogens and detect higher mycorrhizal fungus diversity with the presence of Pinaceae. Under future warming, we can expect feedbacks between fungus composition and plant diversity changes which will affect forest advance, species diversity, and ecosystem stability in arctic regions. KW - Ecosystem dynamics KW - Fungus -plant covariation KW - ITS marker KW - Metabarcoding KW - Sedimentary ancient DNA KW - Siberia KW - trnL P6 loop Y1 - 2022 U6 - https://doi.org/10.1016/j.quascirev.2022.107758 SN - 0277-3791 SN - 1873-457X VL - 295 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Boit, Alice A1 - Spencer, Matthew T1 - Equivalence and dissimilarity of ecosystem states JF - Ecological modelling : international journal on ecological modelling and engineering and systems ecolog N2 - Measuring (dis)similarity between ecosystem states is a key theme in ecology. Much of community and ecosystem ecology is devoted to searching for patterns in ecosystem similarity from an external observer's viewpoint, using variables such as species abundances, measures of diversity and complexity. However, from the point of view of organisms in the ecosystem, proportional population growth rates are the only relevant aspect of ecosystem state, because natural selection acts on groups of organisms with different proportional population growth rates. We therefore argue that two ecosystem states are equivalent if and only if, for each species they contain, the proportional population growth rate does not differ between the states. Based on this result, we develop species-level and aggregated summary measures of ecosystem state and discuss their ecological meaning. We illustrate our approach using a long-term dataset on the plankton community from the Central European Lake Constance. We show that the first three principal components of proportional population growth rates describe most of the variation in ecosystem state in Lake Constance. We strongly recommend using proportional population growth rates and the derived equivalence classes for comparative ecosystem studies. This opens up new perspectives on important existing topics such as alternative stable ecosystem states, community assembly, and the processes generating regularities in ecosystems. KW - Hutchinson niche KW - Ecosystem dynamics KW - Ecosystem dissimilarity KW - Proportional population growth rate KW - Per capita growth rate Y1 - 2019 U6 - https://doi.org/10.1016/j.ecolmodel.2019.01.009 SN - 0304-3800 SN - 1872-7026 VL - 396 SP - 12 EP - 22 PB - Elsevier CY - Amsterdam ER -