TY - JOUR A1 - Park, Jaeheung A1 - Lühr, Hermann A1 - Kervalishvili, Guram N. A1 - Rauberg, Jan A1 - Michaelis, Ingo A1 - Stolle, Claudia A1 - Kwak, Young-Sil T1 - Nighttime magnetic field fluctuations in the topside ionosphere at midlatitudes and their relation to medium-scale traveling ionospheric disturbances: The spatial structure and scale sizes JF - Journal of geophysical research : Space physics N2 - Previous studies suggested that electric and/or magnetic field fluctuations observed in the nighttime topside ionosphere at midlatitudes generally originate from quiet time nocturnal medium-scale traveling ionospheric disturbances (MSTIDs). However, decisive evidences for the connection between the two have been missing. In this study we make use of the multispacecraft observations of midlatitude magnetic fluctuations (MMFs) in the nighttime topside ionosphere by the Swarm constellation. The analysis results show that the area hosting MMFs is elongated in the NW-SE (NE-SW) direction in the Northern (Southern) Hemisphere. The elongation direction and the magnetic field polarization support that the area hosting MMFs is nearly field aligned. All these properties of MMFs suggest that they have close relationship with MSTIDs. Expectation values of root-mean-square field-aligned currents associated with MMFs are up to about 4nA/m(2). MMF coherency significantly drops for longitudinal distances of 1 degrees. KW - midlatitude nighttime magnetic fluctuation KW - nighttime MSTID KW - Swarm constellation Y1 - 2015 U6 - https://doi.org/10.1002/2015JA021315 SN - 2169-9380 SN - 2169-9402 VL - 120 IS - 8 SP - 6818 EP - 6830 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Xiong, Chao A1 - Stolle, Claudia A1 - Luehr, Hermann A1 - Park, Jaeheung A1 - Fejer, Bela G. A1 - Kervalishvili, Guram N. T1 - Scale analysis of equatorial plasma irregularities derived from Swarm constellation JF - Earth, planets and space N2 - In this study, we investigated the scale sizes of equatorial plasma irregularities (EPIs) using measurements from the Swarm satellites during its early mission and final constellation phases. We found that with longitudinal separation between Swarm satellites larger than 0.4 degrees, no significant correlation was found any more. This result suggests that EPI structures include plasma density scale sizes less than 44 km in the zonal direction. During the Swarm earlier mission phase, clearly better EPI correlations are obtained in the northern hemisphere, implying more fragmented irregularities in the southern hemisphere where the ambient magnetic field is low. The previously reported inverted-C shell structure of EPIs is generally confirmed by the Swarm observations in the northern hemisphere, but with various tilt angles. From the Swarm spacecrafts with zonal separations of about 150 km, we conclude that larger zonal scale sizes of irregularities exist during the early evening hours (around 1900 LT). KW - Equatorial plasma irregularities KW - Ionospheric scale lengths KW - Swarm constellation Y1 - 2016 U6 - https://doi.org/10.1186/s40623-016-0502-5 SN - 1880-5981 VL - 68 SP - 189 EP - 202 PB - Springer CY - Heidelberg ER -