TY - JOUR A1 - de Abreu e Lima, Francisco Anastacio A1 - Leifels, Lydia A1 - Nikoloski, Zoran T1 - Regression-based modeling of complex plant traits based on metabolomics data JF - Plant Metabolomics N2 - Bridging metabolomics with plant phenotypic responses is challenging. Multivariate analyses account for the existing dependencies among metabolites, and regression models in particular capture such dependencies in search for association with a given trait. However, special care should be undertaken with metabolomics data. Here we propose a modeling workflow that considers all caveats imposed by such large data sets. KW - Metabolomics KW - Plants KW - Trait KW - Regression KW - Prediction KW - Modeling KW - R programing language KW - R software packages Y1 - 2018 SN - 978-1-4939-7819-9 SN - 978-1-4939-7818-2 U6 - https://doi.org/10.1007/978-1-4939-7819-9_23 SN - 1064-3745 SN - 1940-6029 VL - 1778 SP - 321 EP - 327 PB - Humana Press Inc. CY - New York ER - TY - JOUR A1 - Edlich-Muth, Christian A1 - Muraya, Moses M. A1 - Altmann, Thomas A1 - Selbig, Joachim T1 - Phenomic prediction of maize hybrids JF - Biosystems : journal of biological and information processing sciences N2 - Phenomic experiments are carried out in large-scale plant phenotyping facilities that acquire a large number of pictures of hundreds of plants simultaneously. With the aid of automated image processing, the data are converted into genotype-feature matrices that cover many consecutive days of development. Here, we explore the possibility of predicting the biomass of the fully grown plant from early developmental stage image-derived features. We performed phenomic experiments on 195 inbred and 382 hybrid maizes varieties and followed their progress from 16 days after sowing (DAS) to 48 DAS with 129 image-derived features. By applying sparse regression methods, we show that 73% of the variance in hybrid fresh weight of fully-grown plants is explained by about 20 features at the three-leaf-stage or earlier. Dry weight prediction explained over 90% of the variance. When phenomic features of parental inbred lines were used as predictors of hybrid biomass, the proportion of variance explained was 42 and 45%, for fresh weight and dry weight models consisting of 35 and 36 features, respectively. These models were very robust, showing only a small amount of variation in performance over the time scale of the experiment. We also examined mid-parent heterosis in phenomic features. Feature heterosis displayed a large degree of variance which resulted in prediction performance that was less robust than models of either parental or hybrid predictors. Our results show that phenomic prediction is a viable alternative to genomic and metabolic prediction of hybrid performance. In particular, the utility of early-stage parental lines is very encouraging. (C) 2016 Elsevier Ireland Ltd. All rights reserved. KW - Hybrid prediction KW - LASSO KW - Regression KW - Maize KW - Phenomics Y1 - 2016 U6 - https://doi.org/10.1016/j.biosystems.2016.05.008 SN - 0303-2647 SN - 1872-8324 VL - 146 SP - 102 EP - 109 PB - Elsevier CY - Oxford ER -