TY - JOUR A1 - Kuroki, Agnes A1 - Tchoupa, Arnaud Kengmo A1 - Hartlieb, Matthias A1 - Peltier, Raoul A1 - Locock, Katherine E. S. A1 - Unnikrishnan, Meera A1 - Perrier, Sebastien T1 - Targeting intracellular, multi-drug resistant Staphylococcus aureus with guanidinium polymers by elucidating the structure-activity relationship JF - Biomaterials : biomaterials reviews online N2 - Intracellular persistence of bacteria represents a clinical challenge as bacteria can thrive in an environment protected from antibiotics and immune responses. Novel targeting strategies are critical in tackling antibiotic resistant infections. Synthetic antimicrobial peptides (SAMPs) are interesting candidates as they exhibit a very high antimicrobial activity. We first compared the activity of a library of ammonium and guanidinium polymers with different sequences (statistical, tetrablock and diblock) synthesized by RAFT polymerization against methicillin-resistant S. aureus (MRSA) and methicillin-sensitive strains (MSSA). As the guanidinium SAMPs were the most potent, they were used to treat intracellular S. aureus in keratinocytes. The diblock structure was the most active, reducing the amount of intracellular MSSA and MRSA by two-fold. We present here a potential treatment for intracellular, multi-drug resistant bacteria, using a simple and scalable strategy. KW - Antimicrobial KW - Intracellular bacteria KW - Block copolymers KW - RAFT polymerization Y1 - 2019 U6 - https://doi.org/10.1016/j.biomaterials.2019.119249 SN - 0142-9612 SN - 1878-5905 VL - 217 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Laroque, Sophie A1 - Reifarth, Martin A1 - Sperling, Marcel A1 - Kersting, Sebastian A1 - Kloepzig, Stefanie A1 - Budach, Patrick A1 - Hartlieb, Matthias A1 - Storsberg, Joachim T1 - Impact of multivalence and self-assembly in the design of polymeric antimicrobial peptide mimics JF - ACS applied materials & interfaces N2 - Antimicrobial resistance is an increasingly serious challenge for public health and could result in dramatic negative consequences for the health care sector during the next decades. To solve this problem, antibacterial materials that are unsusceptible toward the development of bacterial resistance are a promising branch of research. In this work, a new type of polymeric antimicrobial peptide mimic featuring a bottlebrush architecture is developed, using a combination of reversible addition-fragmentation chain transfer (RAFT) polymerization and ring-opening metathesis polymerization (ROMP). This approach enables multivalent presentation of antimicrobial subunits resulting in improved bioactivity and an increased hemocompatibility, boosting the selectivity of these materials for bacterial cells. Direct probing of membrane integrity of treated bacteria revealed highly potent membrane disruption caused by bottlebrush copolymers. Multivalent bottlebrush copolymers clearly outperformed their linear equivalents regarding bioactivity and selectivity. The effect of segmentation of cationic and hydrophobic subunits within bottle brushes was probed using heterograft copolymers. These materials were found to self-assemble under physiological conditions, which reduced their antibacterial activity, highlighting the importance of precise structural control for such applications. To the best of our knowledge, this is the first example to demonstrate the positive impact of multivalence, generated by a bottlebrush topology in polymeric antimicrobial peptide mimics, making these polymers a highly promising material platform for the design of new bactericidal systems. KW - RAFT polymerization KW - ROMP KW - antimicrobial polymers KW - antimicrobial peptide KW - mimics KW - bottlebrush copolymers Y1 - 2020 U6 - https://doi.org/10.1021/acsami.0c05944 SN - 1944-8244 SN - 1944-8252 VL - 12 IS - 27 SP - 30052 EP - 30065 PB - American Chemical Society CY - Washington ER -