TY - JOUR A1 - Mohandesan, Elmira A1 - Speller, Camilla F. A1 - Peters, Joris A1 - Uerpmann, Hans-Peter A1 - Uerpmann, Margarethe A1 - De Cupere, Bea A1 - Hofreiter, Michael A1 - Burger, Pamela A. T1 - Combined hybridization capture and shotgun sequencing for ancient DNA analysis of extinct wild and domestic dromedary camel JF - Molecular ecology resources N2 - The performance of hybridization capture combined with next-generation sequencing (NGS) has seen limited investigation with samples from hot and arid regions until now. We applied hybridization capture and shotgun sequencing to recover DNA sequences from bone specimens of ancient-domestic dromedary (Camelus dromedarius) and its extinct ancestor, the wild dromedary from Jordan, Syria, Turkey and the Arabian Peninsula, respectively. Our results show that hybridization capture increased the percentage of mitochondrial DNA (mtDNA) recovery by an average 187-fold and in some cases yielded virtually complete mitochondrial (mt) genomes at multifold coverage in a single capture experiment. Furthermore, we tested the effect of hybridization temperature and time by using a touchdown approach on a limited number of samples. We observed no significant difference in the number of unique dromedary mtDNA reads retrieved with the standard capture compared to the touchdown method. In total, we obtained 14 partial mitochondrial genomes from ancient-domestic dromedaries with 17-95% length coverage and 1.27-47.1-fold read depths for the covered regions. Using whole-genome shotgun sequencing, we successfully recovered endogenous dromedary nuclear DNA (nuDNA) from domestic and wild dromedary specimens with 1-1.06-fold read depths for covered regions. Our results highlight that despite recent methodological advances, obtaining ancient DNA (aDNA) from specimens recovered from hot, arid environments is still problematic. Hybridization protocols require specific optimization, and samples at the limit of DNA preservation need multiple replications of DNA extraction and hybridization capture as has been shown previously for Middle Pleistocene specimens. KW - ancient DNA KW - Camelus dromedarius KW - capture enrichment KW - degraded DNA KW - mitochondrial genome (mtDNA) KW - next-generation sequencing Y1 - 2017 U6 - https://doi.org/10.1111/1755-0998.12551 SN - 1755-098X SN - 1755-0998 VL - 17 IS - 2 SP - 300 EP - 313 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Paijmans, Johanna L. A. A1 - Fickel, Jörns A1 - Courtiol, Alexandre A1 - Hofreiter, Michael A1 - Foerster, Daniel W. T1 - Impact of enrichment conditions on cross-species capture of fresh and degraded DNA JF - Molecular ecology resources N2 - Abstract By combining high-throughput sequencing with target enrichment (‘hybridization capture’), researchers are able to obtain molecular data from genomic regions of interest for projects that are otherwise constrained by sample quality (e.g. degraded and contamination-rich samples) or a lack of a priori sequence information (e.g. studies on nonmodel species). Despite the use of hybridization capture in various fields of research for many years, the impact of enrichment conditions on capture success is not yet thoroughly understood. We evaluated the impact of a key parameter – hybridization temperature – on the capture success of mitochondrial genomes across the carnivoran family Felidae. Capture was carried out for a range of sample types (fresh, archival, ancient) with varying levels of sequence divergence between bait and target (i.e. across a range of species) using pools of individually indexed libraries on Agilent SureSelect™ arrays. Our results suggest that hybridization capture protocols require specific optimization for the sample type that is being investigated. Hybridization temperature affected the proportion of on-target sequences following capture: for degraded samples, we obtained the best results with a hybridization temperature of 65 °C, while a touchdown approach (65 °C down to 50 °C) yielded the best results for fresh samples. Evaluation of capture performance at a regional scale (sliding window approach) revealed no significant improvement in the recovery of DNA fragments with high sequence divergence from the bait at any of the tested hybridization temperatures, suggesting that hybridization temperature may not be the critical parameter for the enrichment of divergent fragments. KW - degraded DNA KW - Felidae KW - hybridization capture KW - mitogenomes KW - next-generation sequencing KW - sequence enrichment Y1 - 2016 U6 - https://doi.org/10.1111/1755-0998.12420 SN - 1755-098X SN - 1755-0998 VL - 16 SP - 42 EP - 55 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Kettner, Marie Therese A1 - Oberbeckmann, Sonja A1 - Labrenz, Matthias A1 - Grossart, Hans-Peter T1 - The Eukaryotic Life on Microplastics in Brackish Ecosystems JF - Frontiers in Microbiology N2 - Microplastics (MP) constitute a widespread contaminant all over the globe. Rivers and wastewater treatment plants (WWTP) transport annually several million tons of MP into freshwaters, estuaries and oceans, where they provide increasing artificial surfaces for microbial colonization. As knowledge on MP-attached communities is insufficient for brackish ecosystems, we conducted exposure experiments in the coastal Baltic Sea, an in-flowing river and a WWTP within the drainage basin. While reporting on prokaryotic and fungal communities from the same set-up previously, we focus here on the entire eukaryotic communities. Using high-throughput 18S rRNA gene sequencing, we analyzed the eukaryotes colonizing on two types of MP, polyethylene and polystyrene, and compared them to the ones in the surrounding water and on a natural surface (wood). More than 500 different taxa across almost all kingdoms of the eukaryotic tree of life were identified on MP, dominated by Alveolata, Metazoa, and Chloroplastida. The eukaryotic community composition on MP was significantly distinct from wood and the surrounding water, with overall lower diversity and the potentially harmful dinoflagellate Pfiesteria being enriched on MP. Co-occurrence networks, which include prokaryotic and eukaryotic taxa, hint at possibilities for dynamic microbial interactions on MP. This first report on total eukaryotic communities on MP in brackish environments highlights the complexity of MP-associated biofilms, potentially leading to altered microbial activities and hence changes in ecosystem functions. KW - microeukaryotes KW - plastic-associated biofilms KW - Baltic Sea KW - polyethylene KW - polystyrene KW - diversity profiles KW - network analysis KW - next-generation sequencing Y1 - 2019 U6 - https://doi.org/10.3389/fmicb.2019.00538 SN - 1664-302X VL - 10 PB - Frontiers Media CY - Lausanne ER -