TY - JOUR A1 - Linden, Michael A1 - Bernert, Sebastian A1 - Funke, Ariane A1 - Dreinhöfer, Karsten E. A1 - Jöbges, Michael A1 - von Kardorff, Ernst A1 - Riedel-Heller, Steffi G. A1 - Spyra, Karla A1 - Völler, Heinz A1 - Warschburger, Petra A1 - Wippert, Pia-Maria T1 - Medizinische Rehabilitation unter einer Lifespan-Perspektive T1 - Medical rehabilitation from a lifespan perspective JF - Bundesgesundheitsblatt, Gesundheitsforschung, Gesundheitsschutz N2 - Die Lifespan-Forschung untersucht die Entwicklung von Individuen über den gesamten Lebenslauf. Die medizinische Rehabilitation hat nach geltendem Sozialrecht die Aufgabe, chronische Krankheiten abzuwenden, zu beseitigen, zu mindern, auszugleichen, eine Verschlimmerung zu verhüten und Negativfolgen für die Lebensführung zu reduzieren. Dies erfordert in wissenschaftlicher wie in praxisbezogener Hinsicht die Entwicklung einer Lebensspannenperspektive als Voraussetzung für die Klassifikation und Diagnostik chronischer Erkrankungen, die Beschreibung von verlaufsbeeinflussenden Faktoren, kritischen Lebensphasen und Critical Incidents (kritische Verlaufszeitpunkte), die Durchführung von prophylaktischen Maßnahmen, die Entwicklung von Assessmentverfahren zur Erfassung und Bewertung von Verläufen oder Vorbehandlungen, die Auswahl und Priorisierung von Interventionen, eine Behandlungs- und Behandlerkoordination auf der Zeitachse, die Präzisierung der Aufgabenstellung für spezialisierte Rehabilitationsmaßnahmen, wie beispielsweise Rehabilitationskliniken, und als Grundlage für die Sozialmedizin. Aufgrund der Vielfalt der individuellen Risikokonstellationen, Krankheitsverläufe und Behandlungssituationen über die Lebensspanne hinweg, bedarf es in der medizinischen Rehabilitation in besonderer Weise einer personalisierten Medizin, die zugleich rehabilitationsförderliche und -behindernde Umweltfaktoren im Rehabilitationsverlauf berücksichtigt. N2 - Lifespan research investigates the development of individuals over the course of life. As medical rehabilitation deals with primary and secondary prophylaxis, treatment, and compensation of chronic illnesses, a lifespan perspective is needed for the classification and diagnosis of chronic disorders, the assessment of course modifying factors, the identification of vulnerable life periods and critical incidents, the implementation of preventive measures, the development of methods for the evaluation of prior treatments, the selection and prioritization of interventions, including specialized inpatient rehabilitation, the coordination of therapies and therapists, and for evaluations in social and forensic medicine. Due to the variety of individual risk constellations, illness courses and treatment situations across the lifespan, personalized medicine is especially important in the context of medical rehabilitation, which takes into consideration hindering and fostering factors alike. KW - Medical rehabilitation KW - Lifespan KW - Chronic illness KW - Personalized medicine KW - Prevention KW - Medizinische Rehabilitation KW - Lebensspanne KW - Chronische Krankheit KW - Personalisierte Medizin KW - Prävention Y1 - 2017 U6 - https://doi.org/10.1007/s00103-017-2520-2 SN - 1436-9990 SN - 1437-1588 VL - 60 SP - 445 EP - 452 PB - Springer CY - New York ER - TY - JOUR A1 - Scheller, Frieder W. A1 - Yarman, Aysu A1 - Bachmann, Till A1 - Hirsch, Thomas A1 - Kubick, Stefan A1 - Renneberg, Reinhard A1 - Schumacher, Soeren A1 - Wollenberger, Ursula A1 - Teller, Carsten A1 - Bier, Frank Fabian ED - Gu, MB ED - Kim, HS T1 - Future of biosensors: a personal view JF - Advances in biochemical engineering, biotechnology JF - Advances in Biochemical Engineering-Biotechnology N2 - Biosensors representing the technological counterpart of living senses have found routine application in amperometric enzyme electrodes for decentralized blood glucose measurement, interaction analysis by surface plasmon resonance in drug development, and to some extent DNA chips for expression analysis and enzyme polymorphisms. These technologies have already reached a highly advanced level and need minor improvement at most. The dream of the "100-dollar' personal genome may come true in the next few years provided that the technological hurdles of nanopore technology or of polymerase-based single molecule sequencing can be overcome. Tailor-made recognition elements for biosensors including membrane-bound enzymes and receptors will be prepared by cell-free protein synthesis. As alternatives for biological recognition elements, molecularly imprinted polymers (MIPs) have been created. They have the potential to substitute antibodies in biosensors and biochips for the measurement of low-molecular-weight substances, proteins, viruses, and living cells. They are more stable than proteins and can be produced in large amounts by chemical synthesis. Integration of nanomaterials, especially of graphene, could lead to new miniaturized biosensors with high sensitivity and ultrafast response. In the future individual therapy will include genetic profiling of isoenzymes and polymorphic forms of drug-metabolizing enzymes especially of the cytochrome P450 family. For defining the pharmacokinetics including the clearance of a given genotype enzyme electrodes will be a useful tool. For decentralized online patient control or the integration into everyday "consumables' such as drinking water, foods, hygienic articles, clothing, or for control of air conditioners in buildings and cars and swimming pools, a new generation of "autonomous' biosensors will emerge. KW - Biosensors KW - Molecularly imprinted polymers KW - Personalized medicine Y1 - 2014 SN - 978-3-642-54143-8; 978-3-642-54142-1 U6 - https://doi.org/10.1007/10_2013_251 SN - 0724-6145 VL - 140 SP - 1 EP - 28 PB - Springer CY - Berlin ER -