TY - THES A1 - Lischke, Betty T1 - Food web regulation under different forcing regimes in shallow lakes T1 - Nahrungsnetzregulation unter verschiedenen Einflussfaktoren in Flachseen BT - synthesis and modelling BT - Synthese und Modellierung N2 - The standing stock and production of organismal biomass depends strongly on the organisms’ biotic environment, which arises from trophic and non-trophic interactions among them. The trophic interactions between the different groups of organisms form the food web of an ecosystem, with the autotrophic and bacterial production at the basis and potentially several levels of consumers on top of the producers. Feeding interactions can regulate communities either by severe grazing pressure or by shortage of resources or prey production, termed top-down and bottom-up control, respectively. The limitations of all communities conglomerate in the food web regulation, which is subject to abiotic and biotic forcing regimes arising from external and internal constraints. This dissertation presents the effects of alterations in two abiotic, external forcing regimes, terrestrial matter input and long-lasting low temperatures in winter. Diverse methodological approaches, a complex ecosystem model study and the analysis of two whole-lake measurements, were performed to investigate effects for the food web regulation and the resulting consequences at the species, community and ecosystem scale. Thus, all types of organisms, autotrophs and heterotrophs, at all trophic levels were investigated to gain a comprehensive overview of the effects of the two mentioned altered forcing regimes. In addition, an extensive evaluation of the trophic interactions and resulting carbon fluxes along the pelagic and benthic food web was performed to display the efficiencies of the trophic energy transfer within the food webs. All studies were conducted in shallow lakes, which is worldwide the most abundant type of lakes. The specific morphology of shallow lakes allows that the benthic production contributes substantially to the whole-lake production. Further, as shallow lakes are often small they are especially sensitive to both, changes in the input of terrestrial organic matter and the atmospheric temperature. Another characteristic of shallow lakes is their appearance in alternative stable states. They are either in a clear-water or turbid state, where macrophytes and phytoplankton dominate, respectively. Both states can stabilize themselves through various mechanisms. These two alternative states and stabilizing mechanisms are integrated in the complex ecosystem model PCLake, which was used to investigate the effects of the enhanced terrestrial particulate organic matter (t-POM) input to lakes. The food web regulation was altered by three distinct pathways: (1) Zoobenthos received more food, increased in biomass which favored benthivorous fish and those reduced the available light due to bioturbation. (2) Zooplankton substituted autochthonous organic matter in their diet by suspended t-POM, thus the autochthonous organic matter remaining in the water reduced its transparency. (3) T-POM suspended into the water and reduced directly the available light. As macrophytes are more light-sensitive than phytoplankton they suffered the most from the lower transparency. Consequently, the resilience of the clear-water state was reduced by enhanced t-POM inputs, which makes the turbid state more likely at a given nutrient concentration. In two subsequent winters long-lasting low temperatures and a concurrent long duration of ice coverage was observed which resulted in low overall adult fish biomasses in the two study lakes – Schulzensee and Gollinsee, characterized by having and not having submerged macrophytes, respectively. Before the partial winterkill of fish Schulzensee allowed for a higher proportion of piscivorous fish than Gollinsee. However, the partial winterkill of fish aligned both communities as piscivorous fish are more sensitive to low oxygen concentrations. Young of the year fish benefitted extremely from the absence of adult fish due to lower predation pressure. Therefore, they could exert a strong top-down control on crustaceans, which restructured the entire zooplankton community leading to low crustacean biomasses and a community composition characterized by copepodites and nauplii. As a result, ciliates were released from top-down control, increased to high biomasses compared to lakes of various trophic states and depths and dominated the zooplankton community. While being very abundant in the study lakes and having the highest weight specific grazing rates among the zooplankton, ciliates exerted potentially a strong top-down control on small phytoplankton and particle-attached bacteria. This resulted in a higher proportion of large phytoplankton compared to other lakes. Additionally, the phytoplankton community was evenly distributed presumably due to the numerous fast growing and highly specific ciliate grazers. Although, the pelagic food web was completely restructured after the subsequent partial winterkills of fish, both lakes were resistant to effects of this forcing regime at the ecosystem scale. The consistently high predation pressure on phytoplankton prevented that Schulzensee switched from the clear-water to the turbid state. Further mechanisms, which potentially stabilized the clear-water state, were allelopathic effects by macrophytes and nutrient limitation in summer. The pelagic autotrophic and bacterial production was an order of magnitude more efficient transferred to animal consumers than the respective benthic production, despite the alterations of the food web structure after the partial winterkill of fish. Thus, the compiled mass-balanced whole-lake food webs suggested that the benthic bacterial and autotrophic production, which exceeded those of the pelagic habitat, was not used by animal consumers. This holds even true if the food quality, additional consumers such as ciliates, benthic protozoa and meiobenthos, the pelagic-benthic link and the potential oxygen limitation of macrobenthos were considered. Therefore, low benthic efficiencies suggest that lakes are primarily pelagic systems at least at the animal consumer level. Overall, this dissertation gives insights into the regulation of organism groups in the pelagic and benthic habitat at each trophic level under two different forcing regimes and displays the efficiency of the carbon transfer in both habitats. The results underline that the alterations of external forcing regimes affect all hierarchical level including the ecosystem. N2 - Die Produktion neuer Organismenbiomasse bildet die Grundlage allen Lebens und hängt von zahlreichen Faktoren, wie den trophischen Interaktionen, ab. Diese limitieren Organismengemeinschaften entweder durch starken Fraß oder begrenzte Ressourcenverfügbarkeit, genannt top-down beziehungsweise bottom-up Kontrolle. Die Nahrungsnetzregulation umfasst die trophischen Interaktionen des Nahrungsnetzes. In dieser Dissertation wurde die Beeinflussung der Nahrungsnetzregulation durch die externen, abiotischen Einflussfaktoren (1) erhöhter Eintrag terrestrischen Kohlenstoffs und (2) lang anhaltende niedrige Temperaturen im Winter in Flachseen untersucht. Flachseen sind aufgrund ihrer Morphometrie sensitiv gegenüber diesen Einflussfaktoren, durch einen erheblichen Anteil benthischer Produktion an der Gesamtseeproduktion gekennzeichnet und treten im trüben oder klaren Zustand auf. Der erhöhte Eintrag terrestrischen Kohlenstoffs in Flachseen verringerte die Resilienz des klaren, Makrophyten dominierten Sees. Unter Nutzung eines komplexen Ökosystemmodells konnten verschiedene Wirkmechanismen dargestellt werden, die jeweils die Lichtverfügbarkeit für Makrophyten reduzierten. Dabei wirkte der zusätzliche terrestrische Kohlenstoff als Nahrungszuschuss für bottom-up kontrollierte benthische Konsumenten, wohingegen top-down kontrollierte pelagische Konsumenten autochthone Nahrungsquellen durch terrestrischen Kohlenstoff ersetzten. Niedrige Temperaturen im Winter verursachten lang anhaltende Eisbedeckung und somit ein Sauerstoffdefizit in beiden Untersuchungsseen. Dies führte zu einem Fischsterben, bei welchem der Anteil piscivorer Fische des Makrophyten dominierten Sees überproportional stark abnahm. Die Fischgemeinschaft beider Seen wurde ähnlicher und war insgesamt von 0+ Fischen gekennzeichnet, welche eine starke top-down Kontrolle auf die Crustaceen ausübten, was diese dezimierte und Ciliaten vom Fraßdruck befreite. Die Zooplanktongemeinschaft wurde von Ciliaten dominiert, welche durch hohe Fraßraten den Biomasseaufbau von Teilen des Phytoplanktons und den Bakterien limitierten. Die energetische Weitergabeeffizienz der pelagischen autotrophen und bakteriellen Produktion zu tierischen Konsumenten war trotz des erheblichen Einflusses des Fischsterbens um ein zehnfaches höher als im benthischen Nahrungsnetz, wie die Synthese von umfangreichen Messungen in Ganzseenexperimenten auf allen trophischen Ebenen zeigte. Die benthischen Konsumenten scheinen weder bottom-up, noch top-down und nur zum Teil Habitat limitiert zu sein, womit ihre Regulation noch unklar bleibt. Die untersuchten Einflussfaktoren wirkten regulierend auf der Art-, Gemeinschafts- und Ökosystemebene. Beide Seen waren resistent gegenüber der drastischen Nahrungsnetzrestrukturierung nach dem Fischsterben, wohingegen der Eintrag terrestrischen Kohlenstoffs die Resilienz des Makrophyten dominierten Zustands verringerte. Dies verdeutlicht die weitreichenden Folgen externer Einflussfaktoren und zeigt, dass methodisch diverse Analysen der Nahrungsnetzregulation entscheidend zum Verständnis der ablaufenden Prozesse beitragen. KW - lake food web KW - complex model KW - ciliates KW - benthic food web KW - allochthonous matter KW - particulate organic matter KW - plankton KW - winter fish kill KW - trophic transfer efficiency KW - bistability KW - Nahrungsnetz KW - Bistabilität KW - allochthoner Eintrag KW - Flachseen KW - Ciliaten KW - Phytoplankton KW - Zooplankton KW - benthische Nahrungskette KW - pelagische Nahrungskette KW - trophische Transfereffizienz KW - Winterfischsterben KW - Modellierung KW - Ökosystem Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-89149 ER - TY - THES A1 - Tirok, Katrin T1 - Predator-prey dynamics under the influence of exogenous and endogenous regulation : a data-based modeling study on spring plankton with respect to climate change T1 - Räuber-Beute Beziehungen unter dem Einfluss exogener und endogener Regulation : eine datenbasierte Modellstudie zur Planktonentwicklung im Frühjahr mit Bezug auf den Klimawandel N2 - Understanding the interactions of predators and their prey and their responses to environmental changes is one of the striking features of ecological research. In this thesis, spring dynamics of phytoplankton and its consumers, zooplankton, were considered in dependence on the environmental conditions in a deep lake (Lake Constance) and a shallow marine water (mesocosms from Kiel Bight), using descriptive statistics, multiple regression models, and process-oriented dynamic simulation models. The development of the spring phytoplankton bloom, representing a dominant feature in the plankton dynamics in temperate and cold oceans and lakes, may depend on temperature, light, and mixing intensity, and the success of over-wintering phyto- and zooplankton. These factors are often correlated in the field. Unexpectedly, irradiance often dominated algal net growth rather than vertical mixing even in deep Lake Constance. Algal net losses from the euphotic layer to larger depth were induced by vertical mixing, but were compensated by the input from larger depth when algae were uniformly distributed over the water column. Dynamics of small, fast-growing algae were well predicted by abiotic variables, such as surface irradiance, vertical mixing intensity, and temperature. A simulation model additionally revealed that even in late winter, grazing may represent an important loss factor of phytoplankton during calm periods when losses due to mixing are small. The importance of losses by mixing and grazing changed rapidly as it depended on the variable mixing intensity. Higher temperature, lower global irradiance and enhanced mixing generated lower algal biomass and primary production in the dynamic simulation model. This suggests that potential consequences of climate change may partly counteract each other. The negative effect of higher temperatures on phytoplankton biomass was due to enhanced temperature-sensitive grazing losses. Comparing the results from deep Lake Constance to those of the shallow mesocosm experiments and simulations, confirmed the strong direct effect of light in contrast to temperature, and the importance of grazing already in early spring as soon as moderate algal biomasses developed. In Lake Constance, ciliates dominated the herbivorous zooplankton in spring. The start of ciliate net growth in spring was closely linked to that of edible algae, chlorophyll a and the vertical mixing intensity but independent of water temperature. The duration of ciliate dominance in spring was largely controlled by the highly variable onset of the phytoplankton bloom, and little by the less variable termination of the ciliate bloom by grazing of meta-zooplankton. During years with an extended spring bloom of algae and ciliates, they coexisted at relatively high biomasses over 15-30 generations, and internally forced species shifts were observed in both communities. Interception feeders alternated with filter feeders, and cryptomonads with non-cryptomonads in their relative importance. These dynamics were not captured by classical 1-predator-1-prey models which consistently predict pronounced predator-prey cycles or equilibria with either the predator or the prey dominating or suppressed. A multi-species predator-prey model with predator species differing in their food selectivity, and prey species in their edibility reproduced the observed patterns. Food-selectivity and edibility were related to the feeding and growth characteristics of the species, which represented ecological trade-offs. For example, the prey species with the highest edibility also had the highest maximum growth rate. Data and model revealed endogenous driven ongoing species alternations, which yielded a higher variability in species-specific biomasses than in total predator and prey biomass. This holds for a broad parameter space as long as the species differ functionally. A more sophisticated model approach enabled the simulation of a continuum of different functional types and adaptability of predator and prey communities to altered environmental conditions, and the maintenance of a rather low model complexity, i.e., low number of equations and free parameters. The community compositions were described by mean functional traits --- prey edibility and predator food-selectivity --- and their variances. The latter represent the functional diversity of the communities and thus, the potential for adaptation. Oscillations in the mean community trait values indicated species shifts. The community traits were related to growth and grazing characteristics representing similar trade-offs as in the multi-species model. The model reproduced the observed patterns, when nonlinear relationships between edibility and capacity, and edibility and food availability for the predator were chosen. A constant minimum amount of variance represented ongoing species invasions and thus, preserved a diversity which allows adaptation on a realistic time-span. N2 - Eine der großen Herausforderungen der heutigen ökologischen Forschung ist es, Veränderungen von Ökosys­temen vorher­zusagen, die mit dem Klimawandel einhergehen. Dafür sind ein umfassendes Verständnis der ver­schiedenen Steuerungsfaktoren des entsprechenden Systems und Kenntnisse zur Anpassungs­fähigkeit des Systems nötig. Auf der Grundlage dieses Wissens, können mit mathemati­schen Modellen Klima­szenarien gerechnet und Vorhersagen erstellt werden. Die vorliegende Arbeit untersuchte die Regulation des Phytoplanktons (kleine freischwebende einzellige Algen) und seiner Konsumenten (Zooplankton, tierische Kleinstlebewesen) sowie deren Wechselspiel während des Frühjahrs mit Bezug auf den Klimawandel. Als Basis dienten langjährige Daten von einem großen tiefen See (Bodensee) sowie Daten von Versuchen mit Organis­men aus einem flachen marinen Ge­wässer (Kieler Förde, Ostsee). Diese Daten wurden mit statistischen Verfahren und mathematischen Modellen ausge­wertet. In Gewässern sind Algen als Primärproduzenten die Nahrungsgrundlage für tieri­sche Organismen bis hin zu Fischen und Meeresfrüchten, und bestimmen die Wasserqualität der Ge­wässer. Daher ist es wichtig zu verstehen, welche Mechanismen die Dynamik der Algen steuern. Der Grundstein für die saisonale Entwicklung von Phyto- und Zooplankton in Gewässern un­serer Breiten wird mit dem Be­ginn des Wachstums im Frühjahr gelegt. Diese Arbeit zeigt, dass es bereits im zeitigen, noch kalten Frühjahr ein Wechselspiel physikalischer und biologischer Steuerungsmechanismen für die Algenent­wicklung gibt. Physikalische Faktoren sind die Wassertemperatur, die Globalstrahlung und die Durchmischung des Gewässers, die durch die Stärke des Windes beeinflusst wird. All diese Steue­rungsmechanismen sind eng miteinander verwoben und werden unterschiedlich stark vom Klimawan­del beeinflusst. Mit mathematischen Modellen gelang es den Einfluss einzelner Faktoren voneinander zu trennen und zu zeigen, dass Effekte durch den Klimawandel sich gegenseitig aufheben oder aber auch verstärken können. Schon geringe Änderungen an der Basis der Nahrungsnetze können weitrei­chende Auswirkungen auf höhere Ebenen habe. Wie stark diese Auswirkungen im Einzelnen sind, hängt entscheidend von der Anpassungsfähigkeit gesamter Ökosysteme und ihrer Artengemeinschaf­ten sowie einzelner Individuen ab. Beispielsweise reagiert die Algengemeinschaft auf einen starken Fraßdruck ihrer Räuber mit einer Verschiebung zu weniger gut fressbaren Algenarten. Diese weniger gut fressbaren Arten unterscheiden sich jedoch auch in anderen Eigenschaften, wie zum Beispiel der Ressourcenausnutzung, von besser fressbaren Algen. In dieser Arbeit wurden Modellansätze entwi­ckelt, die diese Fähigkeit zur Anpassung berücksichtigen. Auf dieser Grundlage und mit Einbeziehung der physikalischen Steuerungsfaktoren können Klimaszenarien gerechnet werden und Vorhersagen für den Einfluss des Klimawandels auf unsere Gewässer gemacht werden, die letztlich auch Perspektiven für Handlungsmöglichkeiten aufzeigen. KW - Ökologie KW - mathematische Simulationsmodelle KW - Plankton KW - Tiefer See KW - Räuber-Beute Beziehungen KW - ecology KW - mathematical simulation models KW - plankton KW - deep lake KW - predator-prey relationships Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-24528 ER -