TY - JOUR A1 - Fumani, F. Khastehdel A1 - Nemati, Somayyeh A1 - Mahdavifar, Saeed T1 - Quantum critical lines in the ground state phase diagram of spin-1/2 frustrated transverse-field ising chains JF - Annalen der Physik N2 - This paper focuses on the ground state phase diagram of a 1D spin-1/2 quantum Ising model with competing first and second nearest neighbour interactions known as the axial next nearest neighbour Ising model in the presence of a transverse magnetic field. Here, using quantum correlations, both numerically and analytically, some evidence is provided to clarify the identification of the ground state phase diagram. Local quantum correlations play a crucial role in detecting the critical lines either revealed or hidden by symmetry-breaking. A non-symmetry-breaking disorder transition line can be identified by the first derivative of both entanglement of formation and quantum discord between nearest neighbour spins. In addition, the quantum correlations between the second neighbour spins can also be used to reveal Kosterlitz-Thouless phase transition when their interaction strength grows and becomes closer to the first nearest neighbour one. The results obtained using the Jordan-Wigner transformation confirm the accuracy of the numerical case. KW - axial next nearest neighbour Ising chains KW - quantum correlations KW - quantum KW - phase transitions Y1 - 2020 U6 - https://doi.org/10.1002/andp.202000384 SN - 0003-3804 SN - 1521-3889 VL - 533 IS - 2 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Inal, Sahika A1 - Koelsch, Jonas D. A1 - Chiappisi, Leonardo A1 - Kraft, Mario A1 - Gutacker, Andrea A1 - Janietz, Dietmar A1 - Scherf, Ullrich A1 - Gradzielski, Michael A1 - Laschewsky, André A1 - Neher, Dieter T1 - Temperature-Regulated Fluorescence Characteristics of Supramolecular Assemblies Formed By a Smart Polymer and a Conjugated Polyelectrolyte JF - MACROMOLECULAR CHEMISTRY AND PHYSICS N2 - Aqueous mixtures of a coumarin-labeled non-ionic thermoresponsive copolymer and a cationic polythiophene exhibit marked changes in their fluorescence properties upon heating. At room temperature, emission from the label is significantly quenched due to energy transfer to the conjugated polyelectrolyte. Heating the mixture reduces the energy-transfer efficiency markedly, resulting in a clearly visible change of the emission color. Although the two macromolecules associate strongly at room temperature, the number of interacting sites is largely reduced upon the phase transition. Crucially, the intermolecular association does not suppress the responsiveness of the smart polymer, meaning that this concept should be applicable to chemo- or bioresponsive polymers with optical read-out, for example, as a sensor device. KW - aqueous solutions KW - conjugated polyelectrolytes KW - fluorescence (or Forster) KW - resonance energy transfer KW - phase transitions KW - thermoresponsive polymers Y1 - 2013 U6 - https://doi.org/10.1002/macp.201200493 SN - 1022-1352 VL - 214 IS - 4 SP - 435 EP - 445 PB - WILEY-V C H VERLAG GMBH CY - WEINHEIM ER - TY - JOUR A1 - Sorgenfrei, Nomi A1 - Giangrisostomi, Erika A1 - Jay, Raphael Martin A1 - Kühn, Danilo A1 - Neppl, Stefan A1 - Ovsyannikov, Ruslan A1 - Sezen, Hikmet A1 - Svensson, Svante A1 - Föhlisch, Alexander T1 - Photodriven transient picosecond top-layer semiconductor to metal phase-transition in p-doped molybdenum disulfide JF - Advanced materials N2 - Visible light is shown to create a transient metallic S-Mo-S surface layer on bulk semiconducting p-doped indirect-bandgap 2H-MoS2. Optically created electron-hole pairs separate in the surface band bending region of the p-doped semiconducting crystal causing a transient accumulation of electrons in the surface region. This triggers a reversible 2H-semiconductor to 1T-metal phase-transition of the surface layer. Electron-phonon coupling of the indirect-bandgap p-doped 2H-MoS2 enables this efficient pathway even at a low density of excited electrons with a distinct optical excitation threshold and saturation behavior. This mechanism needs to be taken into consideration when describing the surface properties of illuminated p-doped 2H-MoS2. In particular, light-induced increased charge mobility and surface activation can cause and enhance the photocatalytic and photoassisted electrochemical hydrogen evolution reaction of water on 2H-MoS2. Generally, it opens up for a way to control not only the surface of p-doped 2H-MoS2 but also related dichalcogenides and layered systems. The findings are based on the sensitivity of time-resolved electron spectroscopy for chemical analysis with photon-energy-tuneable synchrotron radiation. KW - catalysis KW - dichalcogenides KW - hydrogen evolution reaction KW - phase transitions KW - photoelectron spectroscopy Y1 - 2021 U6 - https://doi.org/10.1002/adma.202006957 SN - 0935-9648 SN - 1521-4095 VL - 33 IS - 14 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Xie, Zai-Lai A1 - Taubert, Andreas T1 - Thermomorphic behavior of the ionic liquids [C(4)mim][FeCl4] and [C(12)mim][FeCl4] JF - ChemPhysChem : a European journal of chemical physics and physical chemistry N2 - The iron-containing ionic liquids 1-butyl-3-methylimidazolium tetrachloroferrate(III) [C(4)mim][FeCl4] and 1-dodecyl-3-methylimidazolium tetrachloroferrate(III) [C(12)mim][FeCl4] exhibit a thermally induced demixing with water (thermomorphism). The phase separation temperature varies with IL weight fraction in water and can be tuned between 100 degrees C and room temperature. The reversible lower critical solution temperature (LCST) is only observed at IL weight fractions below ca. 35% in water. UV/Vis, IR, and Raman spectroscopy along with elemental analysis prove that the yellow-brown liquid phase recovered after phase separation is the starting IL [C(4)mim][FeCl4] and [C(12)mim][FeCl4], respectively. Photometry and ICP-OES show that about 40% of iron remains in the water phase upon phase separation. Although the process is thus not very efficient at the moment, the current approach is the first example of an LCST behavior of a metal-containing IL and therefore, although still inefficient, a prototype for catalyst removal or metal extraction. KW - imidazolium KW - ionic liquids KW - phase transitions KW - Raman spectroscopy KW - thermomorphism Y1 - 2011 U6 - https://doi.org/10.1002/cphc.201000808 SN - 1439-4235 VL - 12 IS - 2 SP - 364 EP - 368 PB - Wiley-VCH CY - Weinheim ER -