TY - JOUR A1 - Neumann, Bettina A1 - Götz, Robert A1 - Wrzolek, Pierre A1 - Scheller, Frieder W. A1 - Weidinger, Inez M. A1 - Schwalbe, Matthias A1 - Wollenberger, Ulla T1 - Enhancement of the Electrocatalytic Activity of Thienyl-Substituted Iron Porphyrin Electropolymers by a Hangman Effect JF - ChemCatChem : heterogeneous & homogeneous & bio- & nano-catalysis ; a journal of ChemPubSoc Europe N2 - The thiophene-modified iron porphyrin FeT3ThP and the respective iron Hangman porphyrin FeH3ThP, incorporating a carboxylic acid hanging group in the second coordination sphere of the iron center, were electropolymerized on glassy carbon electrodes using 3,4-ethylenedioxythiophene (EDOT) as co-monomer. Scanning electron microscopy images and Resonance Raman spectra demonstrated incorporation of the porphyrin monomers into a fibrous polymer network. Porphyrin/polyEDOT films catalyzed the reduction of molecular oxygen in a four-electron reaction to water with onset potentials as high as +0.14V vs. Ag/AgCl in an aqueous solution of pH7. Further, FeT3ThP/polyEDOT films showed electrocatalytic activity towards reduction of hydrogen peroxide at highly positive potentials, which was significantly enhanced by introduction of the carboxylic acid hanging group in FeH3ThP. The second coordination sphere residue promotes formation of a highly oxidizing reaction intermediate, presumably via advantageous proton supply, as observed for peroxidases and catalases making FeH3ThP/polyEDOT films efficient mimics of heme enzymes. KW - activation of oxygen species KW - electro-polymerization KW - Hangman porphyrin KW - heterogeneous catalysis KW - immobilization Y1 - 2018 U6 - https://doi.org/10.1002/cctc.201800934 SN - 1867-3880 SN - 1867-3899 VL - 10 IS - 19 SP - 4353 EP - 4361 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Loew, Noya A1 - Bogdanoff, Peter A1 - Herrmann, Iris A1 - Wollenberger, Ursula A1 - Scheller, Frieder W. A1 - Katterle, Martin T1 - Influence of modifications on the efficiency of pyrolysed CoTMPP as electrode material for horseradish peroxidase and the reduction of hydrogen peroxide JF - Electroanalysis : an international journal devoted to fundamental and practical aspects of electroanalysis N2 - A tailor-made horseradish peroxidase (HRP) bulk composite electrode was developed on the basis of pyrolyzed cobalt tetramethoxyphenylporphyrin (CoTMPP) by modifying pore size and surface area of the porous carbon material through varying amounts of iron oxalate and sulfur prior to pyrolyzation. The materials were used to immobilize horseradish peroxidase (HRP). These electrodes were characterized in terms of their efficiency to reduce hydrogen peroxide. The heterogeneous electron transfer rate constants of different materials were determined with the rotating disk electrode method and a k(S) (401 +/- 61 s(-1)) exceeding previously reported values for native HRP was found. KW - cobalt porphyrin KW - electron transfer KW - horseradish peroxidase KW - hydrogen peroxide KW - immobilization Y1 - 2006 U6 - https://doi.org/10.1002/elan.200603664 SN - 1040-0397 VL - 18 IS - 23 SP - 2324 EP - 2330 PB - Wiley-VCH CY - Weinheim ER -