TY - JOUR A1 - Mohammadi, Vahid A1 - Hilfiker, Roger A1 - Jafarnezhadgero, Amir Ali A1 - Jamialahmadi, Shima A1 - Ardakani, Mohammad Karimizadeh A1 - Granacher, Urs T1 - Relationship between training-induced changes in the star excursion balance test and the Y balance test in young male athletes JF - Annals of applied sport science N2 - Background. Dynamic balance is often assessed in athletes using either the Star Excursion Balance Test (SEBT) or the Y Balance Test (YBT). There is evidence that the results for the three common directions are not comparable. Thus, the question is open to debate as to which instrument is better suited to measure training-induced changes over time. Objectives. The aim of this study is to compare the changes in the SEBT and the YBT, measured before and after six weeks of balance and strength exercise programmes in young and healthy athletes. Methods. A total of 30 young male athletes aged 15-17 years participated in this study and were involved in a six-week combined training, including balance and strength exercise. During pre-and post-training periods, the SEBT and YBT were conducted in random order. Results. The comparison between the changes in the SEBT and YBT with a paired sample T-test showed a significant increase in PM (p=0.001) and PL reach directions (p=0.000). No differences were observed in the A reach direction (p=0.38). Conclusion. the responsiveness levels of the SEBT and YBT are similar is valid. Also, because of higher effect size value in the anterior direction in YBT compared with SEBT, this balance test could possibly be preferred in this direction for postural control evaluation. KW - Exercise KW - Postural Control KW - Balance Tests Y1 - 2017 U6 - https://doi.org/10.29252/acadpub.aassjournal.5.3.31 SN - 2322-4479 VL - 5 IS - 3 SP - 31 EP - 38 PB - Annals applied sport science CY - Tehran ER - TY - JOUR A1 - Madadi-Shad, Morteza A1 - Jafarnezhadgero, Amir Ali A1 - Zago, Matteo A1 - Granacher, Urs T1 - Effects of varus knee alignment on gait biomechanics and lower limb muscle activity in boys BT - A cross sectional study JF - Gait & posture N2 - Background: There is evidence that frontal plane lower limb malalignment (e.g., genu varus) is a risk factor for knee osteoarthritis development. However, only scarce information is available on gait biomechanics and muscle activity in boys with genu varus. Research question: To examine the effects of knee varus alignment on lower limb kinematics, kinetics and muscular activity during walking at self-selected speed in boys with genu varus versus healthy age-matched controls. Methods: Thirty-six boys were enrolled in this study and divided into a group of boys with genu varus (n = 18; age: 11.66 +/- 1.64 years) and healthy controls (n = 18; age: 11.44 +/- 1.78 years). Three-dimensional kinematics, ground reaction forces, loading rates, impulses and free moments of both limbs were recorded during five walking trials at self-selected speed. Surface electromyography was recorded for rectus femoris and vastus lateralis/medialis muscles. Results: No significant between-group differences were found for gait speed. Participants in the genu varus group versus controls showed larger peak knee flexion (p = 0.030; d = 0.77), peak knee adduction (p < 0.001; d = 1.63), and peak ankle eversion angles (p < 0.001; d = 2.06). Significantly higher peak ground reaction forces were found at heel contact (vertical [p = 0.002; d = 1.16] and posterior [p < 0.001; d = 1.63] components) and at push off (vertical [p = 0.010; d = 0.93] and anterior [p < 0.001; d = 1.34] components) for genu varus versus controls. Peak medial ground reaction force (p = 0.032; d = 0.76), vertical loading rate (p < 0.001; d = 1.52), anterior-posterior impulse (p = 0.011; d = 0.92), and peak negative free moment (p = 0.030; d = 0.77) were significantly higher in genu varus. Finally, time to reach peak forces was significantly shorter in genu varus boys compared with healthy controls (p < 0.01; d = 0.73-1.60). The genu varus group showed higher activities in vastus lateralis (p < 0.001; d = 1.82) and vastus medialis (p = 0.013; d = 0.90) during the loading phase of walking. Significance: Our study revealed genu varus specific gait characteristics and muscle activities. Greater knee adduction angle in genu varus boys may increase the load on the medial compartment of the knee joint. The observed characteristics in lower limb biomechanics and muscle activity could play a role in the early development of knee osteoarthritis in genu varus boys. KW - Bow leg KW - Quadriceps strength KW - Ground reaction force KW - Pediatric gait KW - Electromyography Y1 - 2019 U6 - https://doi.org/10.1016/j.gaitpost.2019.05.030 SN - 0966-6362 SN - 1879-2219 VL - 72 SP - 69 EP - 75 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Jafarnezhadgero, Amir Ali A1 - Shad, Morteza Madadi A1 - Majlesi, Mahdi A1 - Granacher, Urs T1 - A comparison of running kinetics in children with and without genu varus BT - A cross sectional study JF - PLoS ONE N2 - Introduction Varus knee alignment has been identified as a risk factor for the progression of medial knee osteoarthritis. However, the underlying mechanisms have not been elucidated yet in children. Thus, the aims of the present study were to examine differences in ground reaction forces, loading rate, impulses, and free moment values during running in children with and without genu varus. Methods Thirty-six boys aged 9–14 volunteered to participate in this study. They were divided in two age-matched groups (genu varus versus healthy controls). Body weight adjusted three dimensional kinetic data (Fx, Fy, Fz) were collected during running at preferred speed using two Kistler force plates for the dominant and non-dominant limb. Results Individuals with knee genu varus produced significantly higher (p = .01; d = 1.09; 95%) body weight adjusted ground reaction forces in the lateral direction (Fx) of the dominant limb compared to controls. On the non-dominant limb, genu varus patients showed significantly higher body weight adjusted ground reaction forces values in the lateral (p = .01; d = 1.08; 86%) and medial (p < .001; d = 1.55; 102%) directions (Fx). Further, genu varus patients demonstrated 55% and 36% greater body weight adjusted loading rates in the dominant (p < .001; d = 2.09) and non-dominant (p < .001; d = 1.02) leg, respectively. No significant between-group differences were observed for adjusted free moment values (p>.05). Discussion Higher mediolateral ground reaction forces and vertical loading rate amplitudes in boys with genu varus during running at preferred running speed may accelerate the development of progressive joint degeneration in terms of the age at knee osteoarthritis onset. Therefore, practitioners and therapists are advised to conduct balance and strength training programs to improve lower limb alignment and mediolateral control during dynamic movements. Y1 - 2017 U6 - https://doi.org/10.1371/journal.pone.0185057 SN - 1932-6203 VL - 12 IS - 9 PB - PLoS CY - Lawrence, Kan. ER - TY - GEN A1 - Jafarnezhadgero, Amir Ali A1 - Shad, Morteza Madadi A1 - Majlesi, Mahdi A1 - Granacher, Urs T1 - A comparison of running kinetics in children with and without genu varus BT - A cross sectional study N2 - Introduction Varus knee alignment has been identified as a risk factor for the progression of medial knee osteoarthritis. However, the underlying mechanisms have not been elucidated yet in children. Thus, the aims of the present study were to examine differences in ground reaction forces, loading rate, impulses, and free moment values during running in children with and without genu varus. Methods Thirty-six boys aged 9–14 volunteered to participate in this study. They were divided in two age-matched groups (genu varus versus healthy controls). Body weight adjusted three dimensional kinetic data (Fx, Fy, Fz) were collected during running at preferred speed using two Kistler force plates for the dominant and non-dominant limb. Results Individuals with knee genu varus produced significantly higher (p = .01; d = 1.09; 95%) body weight adjusted ground reaction forces in the lateral direction (Fx) of the dominant limb compared to controls. On the non-dominant limb, genu varus patients showed significantly higher body weight adjusted ground reaction forces values in the lateral (p = .01; d = 1.08; 86%) and medial (p < .001; d = 1.55; 102%) directions (Fx). Further, genu varus patients demonstrated 55% and 36% greater body weight adjusted loading rates in the dominant (p < .001; d = 2.09) and non-dominant (p < .001; d = 1.02) leg, respectively. No significant between-group differences were observed for adjusted free moment values (p>.05). Discussion Higher mediolateral ground reaction forces and vertical loading rate amplitudes in boys with genu varus during running at preferred running speed may accelerate the development of progressive joint degeneration in terms of the age at knee osteoarthritis onset. Therefore, practitioners and therapists are advised to conduct balance and strength training programs to improve lower limb alignment and mediolateral control during dynamic movements. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 349 Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-403326 ER - TY - JOUR A1 - Jafarnezhadgero, Amir Ali A1 - Piran Hamlabadi, Milad A1 - Sajedi, Heidar A1 - Granacher, Urs T1 - Recreational runners who recovered from COVID-19 show different running kinetics and muscle activities compared with healthy controls JF - Gait & posture : official journal of Gait and Clinical Movement Analysis Society, European Society of Movement Analysis in Adults and Children, Società Italiana di Analisi del Movimento in Clinica, International Society for Posture and Gait Research N2 - Background: Social isolation through quarantine represents an effective means to prevent COVID-19 infection. A negative side-effect of quarantine is low physical activity. Research question: What are the differences of running kinetics and muscle activities of recreational runners with a history of COVID-19 versus healthy controls? Methods: Forty men and women aged 20-30 years participated in this study and were divided into two experimental groups. Group 1 (age: 24.1 +/- 2.9) consisted of participants with a history of COVID-19 (COVID group) and group 2 (age: 24.2 +/- 2.7) of healthy age and sex-matched controls (controls). Both groups were tested for their running kinetics using a force plate and electromyographic activities (i.e., tibialis anterior [TA], gastrocnemius medialis [Gas-M], biceps femoris [BF], semitendinosus [ST], vastus lateralis [VL], vastus medialis [VM], rectus femoris [RF], gluteus medius [Glut-M]). Results: Results demonstrated higher peak vertical (p = 0.029; d=0.788) and medial (p = 0.004; d=1.119) ground reaction forces (GRFs) during push-off in COVID individuals compared with controls. Moreover, higher peak lateral GRFs were found during heel contact (p = 0.001; d=1.536) in the COVID group. COVID-19 individuals showed a shorter time-to-reach the peak vertical (p = 0.001; d=3.779) and posterior GRFs (p = 0.005; d=1.099) during heel contact. Moreover, the COVID group showed higher Gas-M (p = 0.007; d=1.109) and lower VM activity (p = 0.026; d=0.811) at heel contact. Significance: Different running kinetics and muscle activities were found in COVID-19 individuals versus healthy controls. Therefore, practitioners and therapists are advised to implement balance and/or strength training to improve lower limbs alignment and mediolateral control during dynamic movements in runners who recovered from COVID-19. KW - Quarantine KW - Ground reaction force KW - Electromyography Y1 - 2022 U6 - https://doi.org/10.1016/j.gaitpost.2021.11.002 SN - 0966-6362 SN - 1879-2219 VL - 91 SP - 260 EP - 265 PB - Elsevier CY - Amsterdam [u.a.] ER - TY - GEN A1 - Jafarnezhadgero, Amir Ali A1 - Noroozi, Raha A1 - Fakhri Mirzanag, Ehsan A1 - Granacher, Urs A1 - de Souza Castelo Oliveira, Anderson T1 - The Impact of COVID-19 and Muscle Fatigue on Cardiorespiratory Fitness and Running Kinetics in Female Recreational Runners T2 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe N2 - Background: There is evidence that fully recovered COVID-19 patients usually resume physical exercise, but do not perform at the same intensity level performed prior to infection. The aim of this study was to evaluate the impact of COVID-19 infection and recovery as well as muscle fatigue on cardiorespiratory fitness and running biomechanics in female recreational runners. Methods: Twenty-eight females were divided into a group of hospitalized and recovered COVID-19 patients (COV, n = 14, at least 14 days following recovery) and a group of healthy age-matched controls (CTR, n = 14). Ground reaction forces from stepping on a force plate while barefoot overground running at 3.3 m/s was measured before and after a fatiguing protocol. The fatigue protocol consisted of incrementally increasing running speed until reaching a score of 13 on the 6–20 Borg scale, followed by steady-state running until exhaustion. The effects of group and fatigue were assessed for steady-state running duration, steady-state running speed, ground contact time, vertical instantaneous loading rate and peak propulsion force. Results: COV runners completed only 56% of the running time achieved by the CTR (p < 0.0001), and at a 26% slower steady-state running speed (p < 0.0001). There were fatigue-related reductions in loading rate (p = 0.004) without group differences. Increased ground contact time (p = 0.002) and reduced peak propulsion force (p = 0.005) were found for COV when compared to CTR. Conclusion: Our results suggest that female runners who recovered from COVID-19 showed compromised running endurance and altered running kinetics in the form of longer stance periods and weaker propulsion forces. More research is needed in this area using larger sample sizes to confirm our study findings. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 806 KW - hospitalization KW - running mechanics KW - ground reaction forces KW - virus infection KW - COVID-19 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-572020 SN - 1866-8364 IS - 806 ER - TY - JOUR A1 - Jafarnezhadgero, Amir Ali A1 - Noroozi, Raha A1 - Fakhri Mirzanag, Ehsan A1 - Granacher, Urs A1 - de Souza Castelo Oliveira, Anderson T1 - The Impact of COVID-19 and Muscle Fatigue on Cardiorespiratory Fitness and Running Kinetics in Female Recreational Runners JF - Frontiers in Physiology N2 - Background: There is evidence that fully recovered COVID-19 patients usually resume physical exercise, but do not perform at the same intensity level performed prior to infection. The aim of this study was to evaluate the impact of COVID-19 infection and recovery as well as muscle fatigue on cardiorespiratory fitness and running biomechanics in female recreational runners. Methods: Twenty-eight females were divided into a group of hospitalized and recovered COVID-19 patients (COV, n = 14, at least 14 days following recovery) and a group of healthy age-matched controls (CTR, n = 14). Ground reaction forces from stepping on a force plate while barefoot overground running at 3.3 m/s was measured before and after a fatiguing protocol. The fatigue protocol consisted of incrementally increasing running speed until reaching a score of 13 on the 6–20 Borg scale, followed by steady-state running until exhaustion. The effects of group and fatigue were assessed for steady-state running duration, steady-state running speed, ground contact time, vertical instantaneous loading rate and peak propulsion force. Results: COV runners completed only 56% of the running time achieved by the CTR (p < 0.0001), and at a 26% slower steady-state running speed (p < 0.0001). There were fatigue-related reductions in loading rate (p = 0.004) without group differences. Increased ground contact time (p = 0.002) and reduced peak propulsion force (p = 0.005) were found for COV when compared to CTR. Conclusion: Our results suggest that female runners who recovered from COVID-19 showed compromised running endurance and altered running kinetics in the form of longer stance periods and weaker propulsion forces. More research is needed in this area using larger sample sizes to confirm our study findings. KW - hospitalization KW - running mechanics KW - ground reaction forces KW - virus infection KW - COVID-19 Y1 - 2022 U6 - https://doi.org/10.3389/fphys.2022.942589 SN - 1664-042X VL - 13 SP - 1 EP - 10 PB - Frontiers CY - Lausanne, Schweiz ER - TY - JOUR A1 - Jafarnezhadgero, Amir Ali A1 - Noroozi, Raha A1 - Fakhri, Ehsan A1 - Granacher, Urs A1 - Oliveira, Anderson Souza T1 - The Impact of COVID-19 and muscle fatigue on cardiorespiratory fitness and running kinetics in female recreational runners JF - Frontiers in physiology N2 - Background: There is evidence that fully recovered COVID-19 patients usually resume physical exercise, but do not perform at the same intensity level performed prior to infection. The aim of this study was to evaluate the impact of COVID-19 infection and recovery as well as muscle fatigue on cardiorespiratory fitness and running biomechanics in female recreational runners. Methods: Twenty-eight females were divided into a group of hospitalized and recovered COVID-19 patients (COV, n = 14, at least 14 days following recovery) and a group of healthy age-matched controls (CTR, n = 14). Ground reaction forces from stepping on a force plate while barefoot overground running at 3.3 m/s was measured before and after a fatiguing protocol. The fatigue protocol consisted of incrementally increasing running speed until reaching a score of 13 on the 6-20 Borg scale, followed by steady-state running until exhaustion. The effects of group and fatigue were assessed for steady-state running duration, steady-state running speed, ground contact time, vertical instantaneous loading rate and peak propulsion force. Results: COV runners completed only 56% of the running time achieved by the CTR (p < 0.0001), and at a 26% slower steady-state running speed (p < 0.0001). There were fatigue-related reductions in loading rate (p = 0.004) without group differences. Increased ground contact time (p = 0.002) and reduced peak propulsion force (p = 0.005) were found for COV when compared to CTR. Conclusion: Our results suggest that female runners who recovered from COVID-19 showed compromised running endurance and altered running kinetics in the form of longer stance periods and weaker propulsion forces. More research is needed in this area using larger sample sizes to confirm our study findings. KW - hospitalization KW - running mechanics KW - ground reaction forces KW - virus KW - infection KW - COVID-19 Y1 - 2022 U6 - https://doi.org/10.3389/fphys.2022.942589 SN - 1664-042X VL - 13 PB - Frontiers Media CY - Lausanne ER - TY - GEN A1 - Jafarnezhadgero, Amir Ali A1 - Madadi-Shad, Morteza A1 - Alavi-Mehr, Seyed Majid A1 - Granacher, Urs T1 - The long-term use of foot orthoses affects walking kinematics and kinetics of children with flexible flat feet BT - A randomized controlled trial T2 - Postprints der Universität Potsdam : Humanwissenschaftliche Reihe N2 - Background Due to inconclusive evidence on the effects of foot orthoses treatment on lower limb kinematics and kinetics in children, studies are needed that particularly evaluate the long-term use of foot orthoses on lower limb alignment during walking. Thus, the main objective of this study was to evaluate the effects of long-term treatment with arch support foot orthoses versus a sham condition on lower extremity kinematics and kinetics during walking in children with flexible flat feet. Methods Thirty boys aged 8–12 years with flexible flat feet participated in this study. While the experimental group (n = 15) used medial arch support foot orthoses during everyday activities over a period of four months, the control group (n = 15) received flat 2-mm-thick insoles (i.e., sham condition) for the same time period. Before and after the intervention period, walking kinematics and ground reaction forces were collected. Results Significant group by time interactions were observed during walking at preferred gait speed for maximum ankle eversion, maximum ankle internal rotation angle, minimum knee abduction angle, maximum knee abduction angle, maximum knee external rotation angle, maximum knee internal rotation angle, maximum hip extension angle, and maximum hip external rotation angle in favor of the foot orthoses group. In addition, statistically significant group by time interactions were detected for maximum posterior, and vertical ground reaction forces in favor of the foot orthoses group. Conclusions The long-term use of arch support foot orthoses proved to be feasible and effective in boys with flexible flat feet to improve lower limb alignment during walking. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 479 KW - lower-extremity kinematics KW - medial longitudinal arch KW - limb overuse conditions KW - ground reaction force KW - low-back-pain KW - knee osteoarthritis KW - calcaneal eversion KW - standing position KW - pelvic alignment KW - sex-differences Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-419852 IS - 479 ER - TY - JOUR A1 - Jafarnezhadgero, Amir Ali A1 - Madadi-Shad, Morteza A1 - Alavi-Mehr, Seyed Majid A1 - Granacher, Urs T1 - The long-term use of foot orthoses affects walking kinematics and kinetics of children with flexible flat feet BT - A randomized controlled trial JF - PLoS ONE N2 - Background Due to inconclusive evidence on the effects of foot orthoses treatment on lower limb kinematics and kinetics in children, studies are needed that particularly evaluate the long-term use of foot orthoses on lower limb alignment during walking. Thus, the main objective of this study was to evaluate the effects of long-term treatment with arch support foot orthoses versus a sham condition on lower extremity kinematics and kinetics during walking in children with flexible flat feet. Methods Thirty boys aged 8–12 years with flexible flat feet participated in this study. While the experimental group (n = 15) used medial arch support foot orthoses during everyday activities over a period of four months, the control group (n = 15) received flat 2-mm-thick insoles (i.e., sham condition) for the same time period. Before and after the intervention period, walking kinematics and ground reaction forces were collected. Results Significant group by time interactions were observed during walking at preferred gait speed for maximum ankle eversion, maximum ankle internal rotation angle, minimum knee abduction angle, maximum knee abduction angle, maximum knee external rotation angle, maximum knee internal rotation angle, maximum hip extension angle, and maximum hip external rotation angle in favor of the foot orthoses group. In addition, statistically significant group by time interactions were detected for maximum posterior, and vertical ground reaction forces in favor of the foot orthoses group. Conclusions The long-term use of arch support foot orthoses proved to be feasible and effective in boys with flexible flat feet to improve lower limb alignment during walking. KW - lower-extremity kinematics KW - medial longitudinal arch KW - limb overuse conditions KW - ground reaction force KW - low-back-pain KW - knee osteoarthritis KW - calcaneal eversion KW - standing position KW - pelvic alignment KW - sex-differences Y1 - 2018 U6 - https://doi.org/10.1371/journal.pone.0205187 SN - 1932-6203 VL - 13 IS - 10 SP - 1 EP - 19 PB - Public Library of Science CY - San Francisco ER - TY - JOUR A1 - Jafarnezhadgero, Amir Ali A1 - Fatollahi, Amir A1 - Granacher, Urs T1 - Eight weeks of exercising on sand has positive effects on biomechanics of walking and muscle activities in individuals with pronated feet BT - a randomized double-blinded controlled trial JF - Sports : open access journal N2 - This study aimed to investigate the effects of eight weeks of barefoot running exercise on sand versus control on measures of walking kinetics and muscle activities in individuals with diagnosed pronated feet. Sixty physically active male adults with pronated feet were randomly allocated into an intervention or a waiting control group. The intervention group conducted an 8-weeks progressive barefoot running exercise program on sand (e.g., short sprints) with three weekly sessions. Pre and post intervention, participants walked at a constant speed of 1.3 m/s +/- 5% on a 18 m walkway with a force plate embedded in the middle of the walkway. Results showed significant group-by-time interactions for peak impact vertical and lateral ground reaction forces. Training but not control resulted in significantly lower peak impact vertical and lateral ground reaction forces. Significant group-by-time interactions were observed for vastus lateralis activity during the loading phase. Training-induced increases were found for the vastus lateralis in the intervention but not in the control group. This study revealed that the applied exercise program is a suitable means to absorb ground reaction forces (e.g., lower impact vertical and lateral peaks) and increase activities of selected lower limb muscles (e.g., vastus lateralis) when walking on stable ground. KW - flat foot KW - free moment KW - gait KW - loading rate KW - training Y1 - 2022 U6 - https://doi.org/10.3390/sports10050070 SN - 2075-4663 VL - 10 IS - 5 PB - MDPI CY - Basel ER - TY - GEN A1 - Jafarnezhadgero, Amir Ali A1 - Fatollahi, Amir A1 - Amirzadeh, Nasrin A1 - Siahkouhian, Marefat A1 - Granacher, Urs T1 - Ground Reaction Forces and Muscle Activity While Walking on Sand versus Stable Ground in Individuals with Pronated Feet Compared with Healthy Controls T2 - Postprints der Universität Potsdam : Humanwissenschaftliche Reihe N2 - Background Sand is an easy-to-access, cost-free resource that can be used to treat pronated feet (PF). Therefore, the aims of this study were to contrast the effects of walking on stable ground versus walking on sand on ground reaction forces (GRFs) and electromyographic (EMG) activity of selected lower limb muscles in PF individuals compared with healthy controls. Methods Twenty-nine controls aged 22.2±2.5 years and 30 PF individuals aged 22.2±1.9 years were enrolled in this study. Participants walked at preferred speed and in randomized order over level ground and sand. A force plate was included in the walkway to collect GRFs. Muscle activities were recorded using EMG system. Results No statistically significant between-group differences were found in preferred walking speed when walking on stable ground (PF: 1.33±0.12 m/s; controls: 1.35±0.14 m/s; p = 0.575; d = 0.15) and sand (PF: 1.19±0.11 m/s; controls: 1.23±0.18 m/s; p = 0.416; d = 0.27). Irrespective of the group, walking on sand (1.21±0.15 m/s) resulted in significantly lower gait speed compared with stable ground walking (1.34±0.13 m/s) (p<0.001; d = 0.93). Significant main effects of “surface” were found for peak posterior GRFs at heel contact, time to peak for peak lateral GRFs at heel contact, and peak anterior GRFs during push-off (p<0.044; d = 0.27–0.94). Pair-wise comparisons revealed significantly smaller peak posterior GRFs at heel contact (p = 0.005; d = 1.17), smaller peak anterior GRFs during push-off (p = 0.001; d = 1.14), and time to peak for peak lateral GRFs (p = 0.044; d = 0.28) when walking on sand. No significant main effects of “group” were observed for peak GRFs and their time to peak (p>0.05; d = 0.06–1.60). We could not find any significant group by surface interactions for peak GRFs and their time to peak. Significant main effects of “surface” were detected for anterior-posterior impulse and peak positive free moment amplitude (p<0.048; d = 0.54–0.71). Pair-wise comparisons revealed a significantly larger peak positive free moment amplitude (p = 0.010; d = 0.71) and a lower anterior-posterior impulse (p = 0.048; d = 0.38) when walking on sand. We observed significant main effects of “group” for the variable loading rate (p<0.030; d = 0.59). Pair-wise comparisons revealed significantly lower loading rates in PF compared with controls (p = 0.030; d = 0.61). Significant group by surface interactions were observed for the parameter peak positive free moment amplitude (p<0.030; d = 0.59). PF individuals exhibited a significantly lower peak positive free moment amplitude (p = 0.030, d = 0.41) when walking on sand. With regards to EMG, no significant main effects of “surface”, main effects of “group”, and group by surface interactions were observed for the recorded muscles during the loading and push-off phases (p>0.05; d = 0.00–0.53). Conclusions The observed lower velocities during walking on sand compared with stable ground were accompanied by lower peak positive free moments during the push-off phase and loading rates during the loading phase. Our findings of similar lower limb muscle activities during walking on sand compared with stable ground in PF together with lower free moment amplitudes, vertical loading rates, and lower walking velocities on sand may indicate more relative muscle activity on sand compared with stable ground. This needs to be verified in future studies. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 590 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-441027 SN - 1866-8364 IS - 590 ER - TY - JOUR A1 - Jafarnezhadgero, Amir Ali A1 - Fatollahi, Amir A1 - Amirzadeh, Nasrin A1 - Siahkouhian, Marefat A1 - Granacher, Urs T1 - Ground Reaction Forces and Muscle Activity While Walking on Sand versus Stable Ground in Individuals with Pronated Feet Compared with Healthy Controls JF - PloS ONe N2 - Background Sand is an easy-to-access, cost-free resource that can be used to treat pronated feet (PF). Therefore, the aims of this study were to contrast the effects of walking on stable ground versus walking on sand on ground reaction forces (GRFs) and electromyographic (EMG) activity of selected lower limb muscles in PF individuals compared with healthy controls. Methods Twenty-nine controls aged 22.2±2.5 years and 30 PF individuals aged 22.2±1.9 years were enrolled in this study. Participants walked at preferred speed and in randomized order over level ground and sand. A force plate was included in the walkway to collect GRFs. Muscle activities were recorded using EMG system. Results No statistically significant between-group differences were found in preferred walking speed when walking on stable ground (PF: 1.33±0.12 m/s; controls: 1.35±0.14 m/s; p = 0.575; d = 0.15) and sand (PF: 1.19±0.11 m/s; controls: 1.23±0.18 m/s; p = 0.416; d = 0.27). Irrespective of the group, walking on sand (1.21±0.15 m/s) resulted in significantly lower gait speed compared with stable ground walking (1.34±0.13 m/s) (p<0.001; d = 0.93). Significant main effects of “surface” were found for peak posterior GRFs at heel contact, time to peak for peak lateral GRFs at heel contact, and peak anterior GRFs during push-off (p<0.044; d = 0.27–0.94). Pair-wise comparisons revealed significantly smaller peak posterior GRFs at heel contact (p = 0.005; d = 1.17), smaller peak anterior GRFs during push-off (p = 0.001; d = 1.14), and time to peak for peak lateral GRFs (p = 0.044; d = 0.28) when walking on sand. No significant main effects of “group” were observed for peak GRFs and their time to peak (p>0.05; d = 0.06–1.60). We could not find any significant group by surface interactions for peak GRFs and their time to peak. Significant main effects of “surface” were detected for anterior-posterior impulse and peak positive free moment amplitude (p<0.048; d = 0.54–0.71). Pair-wise comparisons revealed a significantly larger peak positive free moment amplitude (p = 0.010; d = 0.71) and a lower anterior-posterior impulse (p = 0.048; d = 0.38) when walking on sand. We observed significant main effects of “group” for the variable loading rate (p<0.030; d = 0.59). Pair-wise comparisons revealed significantly lower loading rates in PF compared with controls (p = 0.030; d = 0.61). Significant group by surface interactions were observed for the parameter peak positive free moment amplitude (p<0.030; d = 0.59). PF individuals exhibited a significantly lower peak positive free moment amplitude (p = 0.030, d = 0.41) when walking on sand. With regards to EMG, no significant main effects of “surface”, main effects of “group”, and group by surface interactions were observed for the recorded muscles during the loading and push-off phases (p>0.05; d = 0.00–0.53). Conclusions The observed lower velocities during walking on sand compared with stable ground were accompanied by lower peak positive free moments during the push-off phase and loading rates during the loading phase. Our findings of similar lower limb muscle activities during walking on sand compared with stable ground in PF together with lower free moment amplitudes, vertical loading rates, and lower walking velocities on sand may indicate more relative muscle activity on sand compared with stable ground. This needs to be verified in future studies. Y1 - 2019 U6 - https://doi.org/10.1371/journal.pone.0223219 SN - 1932-6203 VL - 9 IS - 14 PB - PloS ONe CY - San Francisco, California ER - TY - GEN A1 - Jafarnezhadgero, Amir Ali A1 - Fakhri, Ehsan A1 - Granacher, Urs T1 - Effects of nail softness and stiffness with distance running shoes on ground reaction forces and vertical loading rates in male elite long-distance runners with pronated feet T2 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe N2 - Background To improve propulsion during running, athletes often wear spike shoes designed for training and/or competition. Running with spike shoes may cause pain and/or injuries. To address this problem, a modified spike shoe was tested. This study aimed to evaluate the effects of running with dual-versus single-stiffness spike running shoes on running mechanics in long-distance runners with pronated feet. Methods Sixteen male elite (national competitive level) runners (5000 or 10,000 m) aged 28.2 ± 2.5 years with pronated feet volunteered to participate in this study. To be included, participants had to have achieved personal best race times over 5- and/or 10-km races under 17 or 34 min during official running competitions. All participants were heel strikers and had a history of 11.2 ± 4.2 years of training. For the assessment of running kinetics, a force plate was imbedded into a walkway. Running kinematics were recorded using a Vicon-motion-capture system. Nike Zoom Rival shoes (Nike, Nike Zoom Rival, USA) were selected and adapted according to spike softness and stiffness. Participants ran at a constant speed of ~4.0 m/s across the walkway with both shoe conditions in randomized order. Six trials were recorded per condition. The main outcomes included peak ground reaction forces and their time-to-peak, average and instantaneous vertical loading rates, free moments, and peak ankle eversion angles. Results Paired t-tests revealed significantly lower lateral (p = 0.021, d = 0.95) and vertical (p = 0.010, d = 1.40) forces at heel contact during running with dual-stiffness spike shoes. Running with dual-stiffness spike shoes resulted in a significantly longer time-to-peak vertical (p = 0.004, d = 1.40) force at heel contact. The analysis revealed significantly lower average (p = 0.005, d = 0.46) and instantaneous (p = 0.021, d = 0.49) loading rates and peak negative free moment amplitudes (p = 0.016, d = 0.81) when running with dual-stiffness spike shoes. Finally, significantly lower peak ankle eversion angles were observed with dual-stiffness spike shoes (p < 0.001, d = 1.29). Conclusions Running in dual- compared with single-stiffness spike distance running shoes resulted in lower loading rates, free moment amplitudes, and peak ankle eversion angles of long-distance runners with pronated feet. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 764 KW - Flat feet KW - Ground reaction force KW - Footwear Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-550274 SN - 1866-8364 VL - 13 SP - 1 EP - 9 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - JOUR A1 - Jafarnezhadgero, Amir Ali A1 - Fakhri, Ehsan A1 - Granacher, Urs T1 - Effects of nail softness and stiffness with distance running shoes on ground reaction forces and vertical loading rates in male elite long-distance runners with pronated feet JF - BMC sports science, medicine & rehabilitation N2 - Background To improve propulsion during running, athletes often wear spike shoes designed for training and/or competition. Running with spike shoes may cause pain and/or injuries. To address this problem, a modified spike shoe was tested. This study aimed to evaluate the effects of running with dual-versus single-stiffness spike running shoes on running mechanics in long-distance runners with pronated feet. Methods Sixteen male elite (national competitive level) runners (5000 or 10,000 m) aged 28.2 ± 2.5 years with pronated feet volunteered to participate in this study. To be included, participants had to have achieved personal best race times over 5- and/or 10-km races under 17 or 34 min during official running competitions. All participants were heel strikers and had a history of 11.2 ± 4.2 years of training. For the assessment of running kinetics, a force plate was imbedded into a walkway. Running kinematics were recorded using a Vicon-motion-capture system. Nike Zoom Rival shoes (Nike, Nike Zoom Rival, USA) were selected and adapted according to spike softness and stiffness. Participants ran at a constant speed of ~4.0 m/s across the walkway with both shoe conditions in randomized order. Six trials were recorded per condition. The main outcomes included peak ground reaction forces and their time-to-peak, average and instantaneous vertical loading rates, free moments, and peak ankle eversion angles. Results Paired t-tests revealed significantly lower lateral (p = 0.021, d = 0.95) and vertical (p = 0.010, d = 1.40) forces at heel contact during running with dual-stiffness spike shoes. Running with dual-stiffness spike shoes resulted in a significantly longer time-to-peak vertical (p = 0.004, d = 1.40) force at heel contact. The analysis revealed significantly lower average (p = 0.005, d = 0.46) and instantaneous (p = 0.021, d = 0.49) loading rates and peak negative free moment amplitudes (p = 0.016, d = 0.81) when running with dual-stiffness spike shoes. Finally, significantly lower peak ankle eversion angles were observed with dual-stiffness spike shoes (p < 0.001, d = 1.29). Conclusions Running in dual- compared with single-stiffness spike distance running shoes resulted in lower loading rates, free moment amplitudes, and peak ankle eversion angles of long-distance runners with pronated feet. KW - Flat feet KW - Ground reaction force KW - Footwear Y1 - 2021 U6 - https://doi.org/10.1186/s13102-021-00352-7 SN - 2052-1847 VL - 13 SP - 1 EP - 9 PB - BioMed Central CY - London ER - TY - JOUR A1 - Jafarnezhadgero, Amir Ali A1 - Anvari, Maryam A1 - Granacher, Urs T1 - Long-term effects of shoe mileage on ground reaction forces and lower limb muscle activities during walking in individuals with genu varus JF - Clinical biomechanics N2 - Background: Shoe mileage is an important factor that may influence the risk of sustaining injuries during walking. The aims of this study were to examine the effects of shoe mileage on ground reaction forces and activity of lower limb muscles during walking in genu varus individuals compared with controls. Methods: Fifteen healthy and 15 genu varus females received a new pair of running shoes. They were asked to wear these shoes over 6 months. Pre and post intervention, mechanical shoe testing was conducted and ground reaction forces and muscle activities of the right leg were recorded during walking at preferred gait speed. Findings: Significant group-by-time interactions were found for shoe stiffness, antero-posterior and vertical impact peak. We observed higher shoe stiffness and lower impact peaks after intervention in both groups with larger effect sizes in genu varus. Significant group-by-time interactions were identified for vastus medialis (loading phase) and rectus femoris (loading and push-off). For vastus medialis, significant decreases were found from pre-to-post during the loading phase in the control group. Rectus femoris activity was higher post intervention during the loading and push-off phases in both groups with larger effect sizes in genu varus. Interpretation: Our findings indicate that the observed changes in ground reaction forces are more prominent in genu varus individuals. Together with our findings on shoe stiffness, it seems appropriate to change running shoes after an intense wearing time of 6 months, particularly in genu varus individuals. KW - footwear KW - electromyography KW - loading rate KW - patients Y1 - 2020 U6 - https://doi.org/10.1016/j.clinbiomech.2020.01.006 SN - 0268-0033 SN - 1879-1271 VL - 73 SP - 55 EP - 62 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Jafarnezhadgero, Amir Ali A1 - Amirzadeh, Nasrin A1 - Fatollahi, Amir A1 - Siahkouhian, Marefat A1 - de Souza Castelo Oliveira, Anderson A1 - Granacher, Urs T1 - Effects of running on sand vs. stable ground on kinetics and muscle activities in individuals with over-pronated feet JF - Frontiers in physiology / Frontiers Research Foundation N2 - Background: In terms of physiological and biomechanical characteristics, over-pronation of the feet has been associated with distinct muscle recruitment patterns and ground reaction forces during running. Objective: The aim of this study was to evaluate the effects of running on sand vs. stable ground on ground-reaction-forces (GRFs) and electromyographic (EMG) activity of lower limb muscles in individuals with over-pronated feet (OPF) compared with healthy controls. Methods: Thirty-three OPF individuals and 33 controls ran at preferred speed and in randomized-order over level-ground and sand. A force-plate was embedded in an 18-m runway to collect GRFs. Muscle activities were recorded using an EMG-system. Data were adjusted for surface-related differences in running speed. Results: Running on sand resulted in lower speed compared with stable ground running (p < 0.001; d = 0.83). Results demonstrated that running on sand produced higher tibialis anterior activity (p = 0.024; d = 0.28). Also, findings indicated larger loading rates (p = 0.004; d = 0.72) and greater vastus medialis (p < 0.001; d = 0.89) and rectus femoris (p = 0.001; d = 0.61) activities in OPF individuals. Controls but not OPF showed significantly lower gluteus-medius activity (p = 0.022; d = 0.63) when running on sand. Conclusion: Running on sand resulted in lower running speed and higher tibialis anterior activity during the loading phase. This may indicate alterations in neuromuscular demands in the distal part of the lower limbs when running on sand. In OPF individuals, higher loading rates together with greater quadriceps activity may constitute a proximal compensatory mechanism for distal surface instability. KW - flat feet KW - loading rate KW - lower limb mechanics KW - unstable walkway KW - muscle Y1 - 2022 U6 - https://doi.org/10.3389/fphys.2021.822024 SN - 1664-042X VL - 12 SP - 1 EP - 10 PB - Frontiers Research Foundation CY - Lausanne, Schweiz ER - TY - GEN A1 - Jafarnezhadgero, Amir Ali A1 - Amirzadeh, Nasrin A1 - Fatollahi, Amir A1 - Siahkouhian, Marefat A1 - de Souza Castelo Oliveira, Anderson A1 - Granacher, Urs T1 - Effects of running on sand vs. stable ground on kinetics and muscle activities in individuals with over-pronated feet T2 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe N2 - Background: In terms of physiological and biomechanical characteristics, over-pronation of the feet has been associated with distinct muscle recruitment patterns and ground reaction forces during running. Objective: The aim of this study was to evaluate the effects of running on sand vs. stable ground on ground-reaction-forces (GRFs) and electromyographic (EMG) activity of lower limb muscles in individuals with over-pronated feet (OPF) compared with healthy controls. Methods: Thirty-three OPF individuals and 33 controls ran at preferred speed and in randomized-order over level-ground and sand. A force-plate was embedded in an 18-m runway to collect GRFs. Muscle activities were recorded using an EMG-system. Data were adjusted for surface-related differences in running speed. Results: Running on sand resulted in lower speed compared with stable ground running (p < 0.001; d = 0.83). Results demonstrated that running on sand produced higher tibialis anterior activity (p = 0.024; d = 0.28). Also, findings indicated larger loading rates (p = 0.004; d = 0.72) and greater vastus medialis (p < 0.001; d = 0.89) and rectus femoris (p = 0.001; d = 0.61) activities in OPF individuals. Controls but not OPF showed significantly lower gluteus-medius activity (p = 0.022; d = 0.63) when running on sand. Conclusion: Running on sand resulted in lower running speed and higher tibialis anterior activity during the loading phase. This may indicate alterations in neuromuscular demands in the distal part of the lower limbs when running on sand. In OPF individuals, higher loading rates together with greater quadriceps activity may constitute a proximal compensatory mechanism for distal surface instability. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 774 KW - flat feet KW - loading rate KW - lower limb mechanics KW - unstable walkway KW - muscle Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-557567 SN - 1866-8364 SP - 1 EP - 10 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - JOUR A1 - Jafarnezhadgero, Amir Ali A1 - Alavi-Mehr, Seyed Majid A1 - Granacher, Urs T1 - Effects of anti-pronation shoes on lower limb kinematics and kinetics in female runners with pronated feet BT - The role of physical fatigue JF - PLoS ONE N2 - Physical fatigue and pronated feet constitute two risk factors for running-related lower limb injuries. Accordingly, different running shoe companies designed anti-pronation shoes with medial support to limit over pronation in runners. However, there is little evidence on the effectiveness and clinical relevance of anti-pronation shoes. This study examined lower limb kinematics and kinetics in young female runners with pronated feet during running with antipronation versus regular (neutral) running shoes in unfatigued and fatigued condition. Twenty-six female runners aged 24.1±5.6 years with pronated feet volunteered to participate in this study. Kinetic (3D Kistler force plate) and kinematic analyses (Vicon motion analysis system) were conducted to record participants’ ground reaction forces and joint kinematics when running with anti-pronation compared with neutral running shoes. Physical fatigue was induced through an individualized submaximal running protocol on a motorized treadmill using rate of perceived exertion and heart rate monitoring. The statistical analyses indicated significant main effects of “footwear” for peak ankle inversion, peak ankle eversion, and peak hip internal rotation angles (p<0.03; d = 0.46–0.95). Pair-wise comparisons revealed a significantly greater peak ankle inversion angle (p<0.03; d = 0.95; 2.70°) and smaller peak eversion angle (p<0.03; d = 0.46; 2.53°) when running with anti-pronation shoes compared with neutral shoes. For kinetic data, significant main effects of “footwear” were found for peak ankle dorsiflexor moment, peak knee extensor moment, peak hip flexor moment, peak hip extensor moment, peak hip abductor moment, and peak hip internal rotator moment (p<0.02; d = 1.00–1.79). For peak positive hip power in sagittal and frontal planes and peak negative hip power in horizontal plane, we observed significant main effects of “footwear” (p<0.03; d = 0.92–1.06). Pairwise comparisons revealed that peak positive hip power in sagittal plane (p<0.03; d = 0.98; 2.39 w/kg), peak positive hip power in frontal plane (p = 0.014; d = 1.06; 0.54 w/kg), and peak negative hip power in horizontal plane (p<0.03; d = 0.92; 0.43 w/kg) were greater with anti-pronation shoes. Furthermore, the statistical analyses indicated significant main effects of “Fatigue” for peak ankle inversion, peak ankle eversion, and peak knee external rotation angles. Pair-wise comparisons revealed a fatigue-induced decrease in peak ankle inversion angle (p<0.01; d = 1.23; 2.69°) and a fatigue-induced increase in peak knee external rotation angle (p<0.05; d = 0.83; 5.40°). In addition, a fatigue-related increase was found for peak ankle eversion (p<0.01; d = 1.24; 2.67°). For kinetic data, we observed a significant main effect of “Fatigue” for knee flexor moment, knee internal rotator moment, and hip extensor moment (p<0.05; d = 0.83–1.01). The statistical analyses indicated significant a main effect of “Fatigue” for peak negative ankle power in sagittal plane (p<0.01; d = 1.25). Finally, we could not detect any significant footwear by fatigue interaction effects for all measures of joint kinetics and kinematics. Running in anti-pronation compared with neutral running shoes produced lower peak moments and powers in lower limb joints and better control in rear foot eversion. Physical fatigue increased peak moments and powers in lower limb joints irrespective of the type of footwear. KW - hip KW - running KW - feet KW - skeletal joints KW - ankles KW - knees KW - material fatigue KW - body limbs Y1 - 2019 U6 - https://doi.org/10.1371/journal.pone.0216818 SN - 1932-6203 VL - 14 IS - 5 PB - Public Library of Science CY - San Francisco ER - TY - GEN A1 - Jafarnezhadgero, Amir Ali A1 - Alavi-Mehr, Seyed Majid A1 - Granacher, Urs T1 - Effects of anti-pronation shoes on lower limb kinematics and kinetics in female runners with pronated feet BT - The role of physical fatigue T2 - Postprints der Universität Potsdam Humanwissenschaftliche Reihe N2 - Physical fatigue and pronated feet constitute two risk factors for running-related lower limb injuries. Accordingly, different running shoe companies designed anti-pronation shoes with medial support to limit over pronation in runners. However, there is little evidence on the effectiveness and clinical relevance of anti-pronation shoes. This study examined lower limb kinematics and kinetics in young female runners with pronated feet during running with antipronation versus regular (neutral) running shoes in unfatigued and fatigued condition. Twenty-six female runners aged 24.1±5.6 years with pronated feet volunteered to participate in this study. Kinetic (3D Kistler force plate) and kinematic analyses (Vicon motion analysis system) were conducted to record participants’ ground reaction forces and joint kinematics when running with anti-pronation compared with neutral running shoes. Physical fatigue was induced through an individualized submaximal running protocol on a motorized treadmill using rate of perceived exertion and heart rate monitoring. The statistical analyses indicated significant main effects of “footwear” for peak ankle inversion, peak ankle eversion, and peak hip internal rotation angles (p<0.03; d = 0.46–0.95). Pair-wise comparisons revealed a significantly greater peak ankle inversion angle (p<0.03; d = 0.95; 2.70°) and smaller peak eversion angle (p<0.03; d = 0.46; 2.53°) when running with anti-pronation shoes compared with neutral shoes. For kinetic data, significant main effects of “footwear” were found for peak ankle dorsiflexor moment, peak knee extensor moment, peak hip flexor moment, peak hip extensor moment, peak hip abductor moment, and peak hip internal rotator moment (p<0.02; d = 1.00–1.79). For peak positive hip power in sagittal and frontal planes and peak negative hip power in horizontal plane, we observed significant main effects of “footwear” (p<0.03; d = 0.92–1.06). Pairwise comparisons revealed that peak positive hip power in sagittal plane (p<0.03; d = 0.98; 2.39 w/kg), peak positive hip power in frontal plane (p = 0.014; d = 1.06; 0.54 w/kg), and peak negative hip power in horizontal plane (p<0.03; d = 0.92; 0.43 w/kg) were greater with anti-pronation shoes. Furthermore, the statistical analyses indicated significant main effects of “Fatigue” for peak ankle inversion, peak ankle eversion, and peak knee external rotation angles. Pair-wise comparisons revealed a fatigue-induced decrease in peak ankle inversion angle (p<0.01; d = 1.23; 2.69°) and a fatigue-induced increase in peak knee external rotation angle (p<0.05; d = 0.83; 5.40°). In addition, a fatigue-related increase was found for peak ankle eversion (p<0.01; d = 1.24; 2.67°). For kinetic data, we observed a significant main effect of “Fatigue” for knee flexor moment, knee internal rotator moment, and hip extensor moment (p<0.05; d = 0.83–1.01). The statistical analyses indicated significant a main effect of “Fatigue” for peak negative ankle power in sagittal plane (p<0.01; d = 1.25). Finally, we could not detect any significant footwear by fatigue interaction effects for all measures of joint kinetics and kinematics. Running in anti-pronation compared with neutral running shoes produced lower peak moments and powers in lower limb joints and better control in rear foot eversion. Physical fatigue increased peak moments and powers in lower limb joints irrespective of the type of footwear. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 560 KW - hip KW - running KW - feet KW - skeletal joints KW - ankles KW - knees KW - material fatigue KW - body limbs Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-435415 SN - 1866-8364 IS - 560 ER -