TY - JOUR A1 - Ryll, Rene A1 - Eiden, Martin A1 - Heuser, Elisa A1 - Weinhardt, Markus A1 - Ziege, Madlen A1 - Hoeper, Dirk A1 - Groschup, Martin H. A1 - Heckel, Gerald A1 - Johne, Reimar A1 - Ulrich, Rainer G. T1 - Hepatitis E virus in feral rabbits along a rural-urban transect in Central Germany JF - Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics and infectious diseases (MEEGID) N2 - Rabbit associated genotype 3 hepatitis E virus (HEV) strains were detected in feral, pet and farm rabbits in different parts of the world since 2009 and recently also in human patients. Here, we report a serological and molecular survey on 72 feral rabbits, collected along a rural-urban transect in and next to Frankfurt am Main, Central Germany. ELISA investigations revealed in 25 of 72 (34.7%) animals HEV-specific antibodies. HEV derived RNA was detected in 18 of 72 (25%) animals by reverse transcription-polymerase chain reaction assay. The complete genomes from two rabbitHEV-strains, one from a rural site and the other from an inner-city area, were generated by a combination of high-throughput sequencing, a primer walking approach and 5′- and 3′- rapid amplification of cDNA ends. Phylogenetic analysis of open reading frame (ORF)1-derived partial and complete ORF1/ORF2 concatenated coding sequences indicated their similarity to rabbit-associated HEV strains. The partial sequences revealed one cluster of closely-related rabbitHEV sequences from the urban trapping sites that is well separated from several clusters representing rabbitHEV sequences from rural trapping sites. The complete genome sequences of the two novel strains indicated similarities of 75.6–86.4% to the other 17 rabbitHEV sequences; the amino acid sequence identity of the concatenated ORF1/ORF2-encoded proteins reached 89.0–93.1%. The detection of rabbitHEV in an inner-city area with a high human population density suggests a high risk of potential human infection with the zoonotic rabbitHEV, either by direct or indirect contact with infected animals. Therefore, future investigations on the occurrence and frequency of human infections with rabbitHEV are warranted in populations with different contact to rabbits. KW - European rabbit (Oryctolagus cuniculus) KW - Hepatitis E virus KW - Germany KW - Inner-city area KW - Rural habitat KW - Zoonosis Y1 - 2018 U6 - https://doi.org/10.1016/j.meegid.2018.03.019 SN - 1567-1348 SN - 1567-7257 VL - 61 SP - 155 EP - 159 PB - Elsevier CY - Amsterdam ER - TY - GEN A1 - Raafat, Dina A1 - Mrochen, Daniel M. A1 - Al’Sholui, Fawaz A1 - Heuser, Elisa A1 - Ryll, René A1 - Pritchett-Corning, Kathleen R. A1 - Jacob, Jens A1 - Walther, Bernd A1 - Matuschka, Franz-Rainer A1 - Richter, Dania T1 - Molecular epidemiology of methicillin-susceptible and methicillin-resistant Staphylococcus aureus in wild, captive and laboratory rats BT - Effect of habitat on the nasal S. aureus population T2 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe N2 - Rats are a reservoir of human- and livestock-associated methicillin-resistant Staphylococcus aureus (MRSA). However, the composition of the natural S. aureus population in wild and laboratory rats is largely unknown. Here, 144 nasal S. aureus isolates from free-living wild rats, captive wild rats and laboratory rats were genotyped and profiled for antibiotic resistances and human-specific virulence genes. The nasal S. aureus carriage rate was higher among wild rats (23.4%) than laboratory rats (12.3%). Free-living wild rats were primarily colonized with isolates of clonal complex (CC) 49 and CC130 and maintained these strains even in husbandry. Moreover, upon livestock contact, CC398 isolates were acquired. In contrast, laboratory rats were colonized with many different S. aureus lineages—many of which are commonly found in humans. Five captive wild rats were colonized with CC398-MRSA. Moreover, a single CC30-MRSA and two CC130-MRSA were detected in free-living or captive wild rats. Rat-derived S. aureus isolates rarely harbored the phage-carried immune evasion gene cluster or superantigen genes, suggesting long-term adaptation to their host. Taken together, our study revealed a natural S. aureus population in wild rats, as well as a colonization pressure on wild and laboratory rats by exposure to livestock- and human-associated S. aureus, respectively. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 873 KW - Staphylococcus aureus KW - rat KW - clonal complex KW - host adaptation KW - livestock KW - laboratory KW - coagulation KW - immune evasion cluster KW - habitat KW - epidemiology Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-512379 SN - 1866-8364 IS - 2 ER - TY - JOUR A1 - Raafat, Dina A1 - Mrochen, Daniel M. A1 - Al’Sholui, Fawaz A1 - Heuser, Elisa A1 - Ryll, René A1 - Pritchett-Corning, Kathleen R. A1 - Jacob, Jens A1 - Walther, Bernd A1 - Matuschka, Franz-Rainer A1 - Richter, Dania T1 - Molecular epidemiology of methicillin-susceptible and methicillin-resistant Staphylococcus aureus in wild, captive and laboratory rats BT - Effect of habitat on the nasal S. aureus population JF - Toxins N2 - Rats are a reservoir of human- and livestock-associated methicillin-resistant Staphylococcus aureus (MRSA). However, the composition of the natural S. aureus population in wild and laboratory rats is largely unknown. Here, 144 nasal S. aureus isolates from free-living wild rats, captive wild rats and laboratory rats were genotyped and profiled for antibiotic resistances and human-specific virulence genes. The nasal S. aureus carriage rate was higher among wild rats (23.4%) than laboratory rats (12.3%). Free-living wild rats were primarily colonized with isolates of clonal complex (CC) 49 and CC130 and maintained these strains even in husbandry. Moreover, upon livestock contact, CC398 isolates were acquired. In contrast, laboratory rats were colonized with many different S. aureus lineages—many of which are commonly found in humans. Five captive wild rats were colonized with CC398-MRSA. Moreover, a single CC30-MRSA and two CC130-MRSA were detected in free-living or captive wild rats. Rat-derived S. aureus isolates rarely harbored the phage-carried immune evasion gene cluster or superantigen genes, suggesting long-term adaptation to their host. Taken together, our study revealed a natural S. aureus population in wild rats, as well as a colonization pressure on wild and laboratory rats by exposure to livestock- and human-associated S. aureus, respectively. KW - Staphylococcus aureus KW - rat KW - clonal complex KW - host adaptation KW - livestock KW - laboratory KW - coagulation KW - immune evasion cluster KW - habitat KW - epidemiology Y1 - 2020 U6 - https://doi.org/10.3390/toxins12020080 SN - 2072-6651 VL - 12 IS - 2 SP - 1 EP - 22 PB - MDPI CY - Basel ER - TY - JOUR A1 - Fischer, Stefan A1 - Spierling, Nastasja G. A1 - Heuser, Elisa A1 - Kling, Christopher A1 - Schmidt, Sabrina A1 - Rosenfeld, Ulrike M. A1 - Reil, Daniela A1 - Imholt, Christian A1 - Jacob, Jens A1 - Ulrich, Rainer G. A1 - Essbauer, Sandra T1 - High prevalence of Rickettsia helvetica in wild small mammal populations in Germany JF - Ticks and Tick-borne Diseases N2 - Since the beginning of the 21st century, spotted fever rickettsioses are known as emerging diseases worldwide. Rickettsiae are obligately intracellular bacteria transmitted by arthropod vectors. The ecology of Rickettsia species has not been investigated in detail, but small mammals are considered to play a role as reservoirs. Aim of this study was to monitor rickettsiae in wild small mammals over a period of five years in four federal states of Germany. Initial screening of ear pinna tissues of 3939 animals by Pan-Rick real-time PCR targeting the citrate synthase (gltA) gene revealed 296 rodents of seven species and 19 shrews of two species positive for rickettsial DNA. Outer membrane protein gene (ompB, ompAIV) PCRs based typing resulted in the identification of three species: Rickettsia helvetica (90.9%) was found as the dominantly occurring species in the four investigated federal states, but Rickettsia felis (7.8%) and Rickettsia raoultii (1.3%) were also detected. The prevalence of Rickettsia spp. in rodents of the genus Apodemus was found to be higher (approximately 14%) than in all other rodent and shrew species at all investigated sites. General linear mixed model analyses indicated that heavier (older) individuals of yellow-necked mice and male common voles seem to contain more often rickettsial DNA than younger ones. Furthermore, rodents generally collected in forests in summer and autumn more often carried rickettsial DNA. In conclusion, this study indicated a high prevalence of R. helvetica in small mammal populations and suggests an age-dependent increase of the DNA prevalence in some of the species and in animals originating from forest habitats. The finding of R. helvetica and R. felis DNA in multiple small mammal species may indicate frequent trans-species transmission by feeding of vectors on different species. Further investigations should target the reason for the discrepancy between the high rickettsial DNA prevalence in rodents and the so far almost absence of clinical apparent human infections. KW - Rickettsia helvetica KW - Rodent KW - Germany KW - Age KW - Reproduction KW - Season Y1 - 2018 U6 - https://doi.org/10.1016/j.ttbdis.2018.01.009 SN - 1877-959X SN - 1877-9603 VL - 9 IS - 3 SP - 500 EP - 505 PB - Elsevier GMBH CY - München ER - TY - JOUR A1 - Fischer, Stefan A1 - Mayer-Scholl, Anne A1 - Imholt, Christian A1 - Spierling, Nastasja G. A1 - Heuser, Elisa A1 - Schmidt, Sabrina A1 - Reil, Daniela A1 - Rosenfeld, Ulrike M. A1 - Jacob, Jens A1 - Nöckler, Karsten A1 - Ulrich, Rainer G. T1 - Leptospira genomospecies and sequence type prevalence in small mammal populations in Germany JF - Vector-Borne and Zoonotic Diseases N2 - Leptospirosis is a worldwide emerging infectious disease caused by zoonotic bacteria of the genus Leptospira. Numerous mammals, including domestic and companion animals, can be infected by Leptospira spp., but rodents and other small mammals are considered the main reservoir. The annual number of recorded human leptospirosis cases in Germany (2001-2016) was 25-166. Field fever outbreaks in strawberry pickers, due to infection with Leptospira kirschneri serovar Grippotyphosa, were reported in 2007 and 2014. To identify the most commonly occurring Leptospira genomospecies, sequence types (STs), and their small mammal host specificity, a monitoring study was performed during 2010-2014 in four federal states of Germany. Initial screening of kidney tissues of 3,950 animals by PCR targeting the lipl32 gene revealed 435 rodents of 6 species and 89 shrews of three species positive for leptospiral DNA. PCR-based analyses resulted in the identification of the genomospecies L. kirschneri (62.7%), Leptospira interrogans (28.3%), and Leptospira borgpetersenii (9.0%), which are represented by four, one, and two STs, respectively. The average Leptospira prevalence was highest (approximate to 30%) in common voles (Microtus arvalis) and field voles (Microtus agrestis). Both species were exclusively infected with L. kirschneri. In contrast, in bank voles (Myodes glareolus) and yellow-necked mice (Apodemus flavicollis), DNA of all three genomospecies was detected, and in common shrews (Sorex araneus) DNA of L. kirschneri and L. borgpetersenii was identified. The association between individual infection status and demographic factors varied between species; infection status was always positively correlated to body weight. In conclusion, the study confirmed a broad geographical distribution of Leptospira in small mammals and suggested an important public health relevance of common and field voles as reservoirs of L. kirschneri. Furthermore, the investigations identified seasonal, habitat-related, as well as individual influences on Leptospira prevalence in small mammals that might impact public health. KW - demography KW - Germany KW - habitat KW - Leptospira spp KW - leptospirosis KW - MLST KW - rodent KW - shrew KW - SLST Y1 - 2018 U6 - https://doi.org/10.1089/vbz.2017.2140 SN - 1530-3667 SN - 1557-7759 VL - 18 IS - 4 SP - 188 EP - 199 PB - Liebert CY - New Rochelle ER -