TY - JOUR A1 - Zimmermann, Beate A1 - Zimmermann, Alexander A1 - Turner, Benjamin L. A1 - Francke, Till A1 - Elsenbeer, Helmut T1 - Connectivity of overland flow by drainage network expansion in a rain forest catchment JF - Water resources research N2 - Soils in various places of the Panama Canal Watershed feature a low saturated hydraulic conductivity (K-s) at shallow depth, which promotes overland-flow generation and associated flashy catchment responses. In undisturbed forests of these areas, overland flow is concentrated in flow lines that extend the channel network and provide hydrological connectivity between hillslopes and streams. To understand the dynamics of overland-flow connectivity, as well as the impact of connectivity on catchment response, we studied an undisturbed headwater catchment by monitoring overland-flow occurrence in all flow lines and discharge, suspended sediment, and total phosphorus at the catchment outlet. We find that connectivity is strongly influenced by seasonal variation in antecedent wetness and can develop even under light rainfall conditions. Connectivity increased rapidly as rainfall frequency increased, eventually leading to full connectivity and surficial drainage of entire hillslopes. Connectivity was nonlinearly related to catchment response. However, additional information on factors such as overland-flow volume would be required to constrain relationships between connectivity, stormflow, and the export of suspended sediment and phosphorus. The effort to monitor those factors would be substantial, so we advocate applying the established links between rain event characteristics, drainage network expansion by flow lines, and catchment response for predictive modeling and catchment classification in forests of the Panama Canal Watershed and in similar regions elsewhere. KW - connectivity KW - overland flow KW - stormflow KW - suspended sediment KW - phosphorus KW - drainage network expansion Y1 - 2014 U6 - https://doi.org/10.1002/2012WR012660 SN - 0043-1397 SN - 1944-7973 VL - 50 IS - 2 SP - 1457 EP - 1473 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Zimmermann, Alexander A1 - Schinn, Dustin S. A1 - Francke, Till A1 - Elsenbeer, Helmut A1 - Zimmermann, Beate T1 - Uncovering patterns of near-surface saturated hydraulic conductivity in an overland flow-controlled landscape JF - Geoderma : an international journal of soil science N2 - Saturated hydraulic conductivity (K-s) is an important soil characteristic affecting soil water storage, runoff generation and erosion processes. In some areas where high-intensity rainfall coincides with low K-s values at shallow soil depths, frequent overland flow entails dense drainage networks. Consequently, linear structures such as flowlines alternate with inter-flowline areas. So far, investigations of the spatial variability of K-s mainly relied on isotropic covariance models which are unsuitable to reveal patterns resulting from linear structures. In the present study, we applied two sampling approaches so as to adequately characterize K-s spatial variability in a tropical forest catchment that features a high density of flowlines: A classical nested sampling survey and a purposive sampling strategy adapted to the presence of flowlines. The nested sampling approach revealed the dominance of small-scale variability, which is in line with previous findings. Our purposive sampling, however, detected a strong spatial gradient: surface K-s increased substantially as a function of distance to flowline; 10 m off flowlines, values were similar to the spatial mean of K-s. This deterministic trend can be included as a fixed effect in a linear mixed modeling framework to obtain realistic spatial fields of K-s. In a next step we used probability maps based on those fields and prevailing rainfall intensities to assess the hydrological relevance of the detected pattern. This approach suggests a particularly good agreement between the probability statements of K-s exceedance and observed overland flow occurrence during wet stages of the rainy season. KW - Soil hydrology KW - Saturated hydraulic conductivity KW - Overland flow generation KW - Spatial patterns KW - Drainage network Y1 - 2013 U6 - https://doi.org/10.1016/j.geoderma.2012.11.002 SN - 0016-7061 VL - 195 IS - 169 SP - 1 EP - 11 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Zimmermann, Alexander A1 - Francke, Till A1 - Elsenbeer, Helmut T1 - Forests and erosion: Insights from a study of suspended-sediment dynamics in an overland flow-prone rainforest catchment JF - Journal of hydrology N2 - Forests seem to represent low-erosion systems, according to most, but not all, studies of suspended-sediment yield. We surmised that this impression reflects an accidental bias in the selection of monitoring sites towards those with prevailing vertical hydrological flowpaths, rather than a tight causal link between vegetation cover and erosion alone. To evaluate this conjecture, we monitored, over a 2-year period, a 3.3 ha old-growth rainforest catchment prone to frequent and widespread overland flow. We sampled stream flow at two and overland flow at three sites in a nested arrangement on a within-event basis, and monitored the spatial and temporal frequency of overland flow. Suspended-sediment concentrations were modeled with Random Forest and Quantile Regression Forest to be able to estimate the annual yields for the 2 years, which amounted to 1 t ha(-1) and 2 t ha(-1) in a year with below-average and with average precipitation, respectively. These estimates place our monitoring site near the high end of reported suspended-sediment yields and lend credence to the notion that low yields reflect primarily the dominance of vertical flowpaths and not necessarily and exclusively the kind of vegetative cover. Undisturbed forest and surface erosion are certainly no contradiction in terms even in the absence of mass movements. KW - Rainforest KW - Overland flow KW - Erosion KW - Suspended-sediment yield KW - Quantile Regression Forest model KW - Panama Canal watershed Y1 - 2012 U6 - https://doi.org/10.1016/j.jhydrol.2012.01.039 SN - 0022-1694 VL - 428 IS - 7 SP - 170 EP - 181 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Schmidt, Lena Katharina A1 - Francke, Till A1 - Rottler, Erwin A1 - Blume, Theresa A1 - Schöber, Johannes A1 - Bronstert, Axel T1 - Suspended sediment and discharge dynamics in a glaciated alpine environment BT - identifying crucial areas and time periods on several spatial and temporal scales in the Ötztal, Austria JF - Earth surface dynamics N2 - Glaciated high-alpine areas are fundamentally altered by climate change, with well-known implications for hydrology, e.g., due to glacier retreat, longer snow-free periods, and more frequent and intense summer rainstorms. While knowledge on how these hydrological changes will propagate to suspended sediment dynamics is still scarce, it is needed to inform mitigation and adaptation strategies. To understand the processes and source areas most relevant to sediment dynamics, we analyzed discharge and sediment dynamics in high temporal resolution as well as their patterns on several spatial scales, which to date few studies have done. We used a nested catchment setup in the Upper Ötztal in Tyrol, Austria, where high-resolution (15 min) time series of discharge and suspended sediment concentrations are available for up to 15 years (2006–2020). The catchments of the gauges in Vent, Sölden and Tumpen range from 100 to almost 800 km2 with 10 % to 30 % glacier cover and span an elevation range of 930 to 3772 m a.s.l. We analyzed discharge and suspended sediment yields (SSY), their distribution in space, their seasonality and spatial differences therein, and the relative importance of short-term events. We complemented our analysis by linking the observations to satellite-based snow cover maps, glacier inventories, mass balances and precipitation data. Our results indicate that the areas above 2500 m a.s.l., characterized by glacier tongues and the most recently deglaciated areas, are crucial for sediment generation in all sub-catchments. This notion is supported by the synchronous spring onset of sediment export at the three gauges, which coincides with snowmelt above 2500 m but lags behind spring discharge onsets. This points at a limitation of suspended sediment supply as long as the areas above 2500 m are snow-covered. The positive correlation of annual SSY with glacier cover (among catchments) and glacier mass balances (within a catchment) further supports the importance of the glacier-dominated areas. The analysis of short-term events showed that summer precipitation events were associated with peak sediment concentrations and yields but on average accounted for only 21 % of the annual SSY in the headwaters. These results indicate that under current conditions, thermally induced sediment export (through snow and glacier melt) is dominant in the study area. Our results extend the scientific knowledge on current hydro-sedimentological conditions in glaciated high-alpine areas and provide a baseline for studies on projected future changes in hydro-sedimentological system dynamics. Y1 - 2022 U6 - https://doi.org/10.5194/esurf-10-653-2022 SN - 2196-632X SN - 2196-6311 VL - 10 IS - 3 SP - 653 EP - 669 PB - Copernicus Publications CY - Göttingen ER - TY - GEN A1 - Schmidt, Lena Katharina A1 - Francke, Till A1 - Rottler, Erwin A1 - Blume, Theresa A1 - Schöber, Johannes T1 - Suspended sediment and discharge dynamics in a glaciated alpine environment: identifying crucial areas and time periods on several spatial and temporal scales in the Ötztal, Austria T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Glaciated high-alpine areas are fundamentally altered by climate change, with well-known implications for hydrology, e.g., due to glacier retreat, longer snow-free periods, and more frequent and intense summer rainstorms. While knowledge on how these hydrological changes will propagate to suspended sediment dynamics is still scarce, it is needed to inform mitigation and adaptation strategies. To understand the processes and source areas most relevant to sediment dynamics, we analyzed discharge and sediment dynamics in high temporal resolution as well as their patterns on several spatial scales, which to date few studies have done. We used a nested catchment setup in the Upper Ötztal in Tyrol, Austria, where high-resolution (15 min) time series of discharge and suspended sediment concentrations are available for up to 15 years (2006–2020). The catchments of the gauges in Vent, Sölden and Tumpen range from 100 to almost 800 km2 with 10 % to 30 % glacier cover and span an elevation range of 930 to 3772 m a.s.l. We analyzed discharge and suspended sediment yields (SSY), their distribution in space, their seasonality and spatial differences therein, and the relative importance of short-term events. We complemented our analysis by linking the observations to satellite-based snow cover maps, glacier inventories, mass balances and precipitation data. Our results indicate that the areas above 2500 m a.s.l., characterized by glacier tongues and the most recently deglaciated areas, are crucial for sediment generation in all sub-catchments. This notion is supported by the synchronous spring onset of sediment export at the three gauges, which coincides with snowmelt above 2500 m but lags behind spring discharge onsets. This points at a limitation of suspended sediment supply as long as the areas above 2500 m are snow-covered. The positive correlation of annual SSY with glacier cover (among catchments) and glacier mass balances (within a catchment) further supports the importance of the glacier-dominated areas. The analysis of short-term events showed that summer precipitation events were associated with peak sediment concentrations and yields but on average accounted for only 21 % of the annual SSY in the headwaters. These results indicate that under current conditions, thermally induced sediment export (through snow and glacier melt) is dominant in the study area. Our results extend the scientific knowledge on current hydro-sedimentological conditions in glaciated high-alpine areas and provide a baseline for studies on projected future changes in hydro-sedimentological system dynamics. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1296 Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-576564 SN - 1866-8372 IS - 1296 SP - 653 EP - 669 ER - TY - JOUR A1 - Salazar, S. A1 - Frances, F. A1 - Komma, J. A1 - Blume, Theresa A1 - Francke, Till A1 - Bronstert, Axel A1 - Blöschl, Günter T1 - A comparative analysis of the effectiveness of flood management measures based on the concept of "retaining water in the landscape" in different European hydro-climatic regions JF - Natural hazards and earth system sciences N2 - In this paper, we analyse the effectiveness of flood management measures based on the concept known as "retaining water in the landscape". The investigated measures include afforestation, micro-ponds and small-reservoirs. A comparative and model-based methodological approach has been developed and applied for three meso-scale catchments located in different European hydro-climatological regions: Poyo (184 km(2)) in the Spanish Mediterranean, Upper Iller (954 km(2)) in the German Alps and Kamp (621 km(2)) in Northeast-Austria representing the Continental hydro-climate. This comparative analysis has found general similarities in spite of the particular differences among studied areas. In general terms, the flood reduction through the concept of "retaining water in the landscape" depends on the following factors: the storage capacity increase in the catchment resulting from such measures, the characteristics of the rainfall event, the antecedent soil moisture condition and the spatial distribution of such flood management measures in the catchment. In general, our study has shown that, this concept is effective for small and medium events, but almost negligible for the largest and less frequent floods: this holds true for all different hydro-climatic regions, and with different land-use, soils and morphological settings. Y1 - 2012 U6 - https://doi.org/10.5194/nhess-12-3287-2012 SN - 1561-8633 VL - 12 IS - 11 SP - 3287 EP - 3306 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Rottler, Erwin A1 - Vormoor, Klaus Josef A1 - Francke, Till A1 - Warscher, Michael A1 - Strasser, Ulrich A1 - Bronstert, Axel T1 - Elevation-dependent compensation effects in snowmelt in the Rhine River Basin upstream gauge Basel JF - Hydrology research : an international journal / Nordic Association of Hydrology ; British Hydrological Society N2 - In snow-dominated river basins, floods often occur during early summer, when snowmelt-induced runoff superimposes with rainfall-induced runoff. An earlier onset of seasonal snowmelt as a consequence of a warming climate is often expected to shift snowmelt contribution to river runoff and potential flooding to an earlier date. Against this background, we assess the impact of rising temperatures on seasonal snowpacks and quantify changes in timing, magnitude and elevation of snowmelt. We analyse in situ snow measurements, conduct snow simulations and examine changes in river runoff at key gauging stations. With regard to snowmelt, we detect a threefold effect of rising temperatures: snowmelt becomes weaker, occurs earlier and forms at higher elevations. Due to the wide range of elevations in the catchment, snowmelt does not occur simultaneously at all elevations. Results indicate that elevation bands melt together in blocks. We hypothesise that in a warmer world with similar sequences of weather conditions, snowmelt is moved upward to higher elevation. The movement upward the elevation range makes snowmelt in individual elevation bands occur earlier, although the timing of the snowmelt-induced runoff stays the same. Meltwater from higher elevations, at least partly, replaces meltwater from elevations below. KW - compensation effects KW - elevation-dependency KW - Rhine River KW - snowmelt KW - timing Y1 - 2021 U6 - https://doi.org/10.2166/nh.2021.092 SN - 2224-7955 VL - 52 IS - 2 SP - 536 EP - 557 PB - IWA Publ. CY - London ER - TY - JOUR A1 - Rottler, Erwin A1 - Vormoor, Klaus Josef A1 - Francke, Till A1 - Bronstert, Axel T1 - Hydro Explorer BT - an interactive web app to investigate changes in runoff timing and runoff seasonality all over the world JF - River research and applications N2 - Climatic changes and anthropogenic modifications of the river basin or river network have the potential to fundamentally alter river runoff. In the framework of this study, we aim to analyze and present historic changes in runoff timing and runoff seasonality observed at river gauges all over the world. In this regard, we develop the Hydro Explorer, an interactive web app, which enables the investigation of >7,000 daily resolution discharge time series from the Global Runoff Data Centre (GRDC). The interactive nature of the developed web app allows for a quick comparison of gauges, regions, methods, and time frames. We illustrate the available analytical tools by investigating changes in runoff timing and runoff seasonality in the Rhine River Basin. Since we provide the source code of the application, existing analytical approaches can be modified, new methods added, and the tool framework can be re-used to visualize other data sets. KW - global runoff database KW - interactive web app KW - R Shiny KW - runoff KW - seasonality KW - runoff timing Y1 - 2021 U6 - https://doi.org/10.1002/rra.3772 SN - 1535-1459 SN - 1535-1467 VL - 37 IS - 4 SP - 544 EP - 554 PB - Wiley CY - New York ER - TY - JOUR A1 - Rottler, Erwin A1 - Kormann, Christoph Martin A1 - Francke, Till A1 - Bronstert, Axel T1 - Elevation-dependent warming in the Swiss Alps 1981-2017 BT - Features, forcings and feedbacks JF - International journal of climatology : a journal of the Royal Meteorological Society N2 - Due to the environmental and socio-economic importance of mountainous regions, it is crucial to understand causes and consequences of climatic changes in those sensitive landscapes. Daily resolution alpine climate data from Switzerland covering an elevation range of over 3,000m between 1981 and 2017 have been analysed using highly resolved trends in order to gain a better understanding of features, forcings and feedbacks related to temperature changes in mountainous regions. Particular focus is put on processes related to changes in weather types, incoming solar radiation, cloud cover, air humidity, snow/ice and elevation dependency of temperature trends. Temperature trends in Switzerland differ depending on the time of the year, day and elevation. Warming is strongest during spring and early summer with enhanced warming of daytime maximum temperatures. Elevation-based differences in temperature trends occur during autumn and winter with stronger warming at lower elevations. We attribute this elevation-dependent temperature signal mainly to elevation-based differences in trends of incoming solar radiation and elevation-sensitive responses to changes in frequencies of weather types. In general, effects of varying frequencies of weather types overlap with trends caused by transmission changes in short- and long-wave radiation. Temperature signals arising from snow/ice albedo feedback mechanisms are probably small and might be hidden by other effects. KW - cloud cover KW - elevation dependency KW - mountain climate KW - snow KW - ice-albedo feedback KW - Swiss Alps KW - temperature trend KW - weather types Y1 - 2018 U6 - https://doi.org/10.1002/joc.5970 SN - 0899-8418 SN - 1097-0088 VL - 39 IS - 5 SP - 2556 EP - 2568 PB - Wiley CY - Hoboken ER - TY - GEN A1 - Rottler, Erwin A1 - Francke, Till A1 - Bürger, Gerd A1 - Bronstert, Axel T1 - Long-term changes in central European river discharge for 1869–2016 BT - Impact of changing snow covers, reservoir constructions and an intensified hydrological cycle T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Recent climatic changes have the potential to severely alter river runoff, particularly in snow-dominated river basins. Effects of changing snow covers superimpose with changes in precipitation and anthropogenic modifications of the watershed and river network. In the attempt to identify and disentangle long-term effects of different mechanisms, we employ a set of analytical tools to extract long-term changes in river runoff at high resolution. We combine quantile sampling with moving average trend statistics and empirical mode decomposition and apply these tools to discharge data recorded along rivers with nival, pluvial and mixed flow regimes as well as temperature and precipitation data covering the time frame 1869-2016. With a focus on central Europe, we analyse the long-term impact of snow cover and precipitation changes along with their interaction with reservoir constructions. Our results show that runoff seasonality of snow-dominated rivers decreases. Runoff increases in winter and spring, while discharge decreases in summer and at the beginning of autumn. We attribute this redistribution of annual flow mainly to reservoir constructions in the Alpine ridge. During the course of the last century, large fractions of the Alpine rivers were dammed to produce hydropower. In recent decades, runoff changes induced by reservoir constructions seem to overlap with changes in snow cover. We suggest that Alpine signals propagate downstream and affect runoff far outside the Alpine area in river segments with mixed flow regimes. Furthermore, our results hint at more (intense) rain-fall in recent decades. Detected increases in high discharge can be traced back to corresponding changes in precipitation. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1412 KW - empirical mode decomposition KW - atmospheric blocking KW - heavy precipitation KW - streamflow trends KW - climate-change KW - rhine basin KW - time-series KW - events KW - Switzerland KW - variability Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-517763 SN - 1866-8372 IS - 4 ER - TY - JOUR A1 - Rottler, Erwin A1 - Francke, Till A1 - Bürger, Gerd A1 - Bronstert, Axel T1 - Long-term changes in central European river discharge for 1869–2016 BT - impact of changing snow covers, reservoir constructions and an intensified hydrological cycle JF - Hydrology and Earth System Sciences N2 - Recent climatic changes have the potential to severely alter river runoff, particularly in snow-dominated river basins. Effects of changing snow covers superimpose with changes in precipitation and anthropogenic modifications of the watershed and river network. In the attempt to identify and disentangle long-term effects of different mechanisms, we employ a set of analytical tools to extract long-term changes in river runoff at high resolution. We combine quantile sampling with moving average trend statistics and empirical mode decomposition and apply these tools to discharge data recorded along rivers with nival, pluvial and mixed flow regimes as well as temperature and precipitation data covering the time frame 1869-2016. With a focus on central Europe, we analyse the long-term impact of snow cover and precipitation changes along with their interaction with reservoir constructions. Our results show that runoff seasonality of snow-dominated rivers decreases. Runoff increases in winter and spring, while discharge decreases in summer and at the beginning of autumn. We attribute this redistribution of annual flow mainly to reservoir constructions in the Alpine ridge. During the course of the last century, large fractions of the Alpine rivers were dammed to produce hydropower. In recent decades, runoff changes induced by reservoir constructions seem to overlap with changes in snow cover. We suggest that Alpine signals propagate downstream and affect runoff far outside the Alpine area in river segments with mixed flow regimes. Furthermore, our results hint at more (intense) rain-fall in recent decades. Detected increases in high discharge can be traced back to corresponding changes in precipitation. KW - empirical mode decomposition KW - atmospheric blocking KW - heavy precipitation KW - streamflow trends KW - climate-change KW - rhine basin KW - time-series KW - events KW - Switzerland KW - variability Y1 - 2020 U6 - https://doi.org/10.5194/hess-24-1721-2020 SN - 1027-5606 SN - 1607-7938 VL - 24 IS - 4 SP - 1721 EP - 1740 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Pilz, Tobias A1 - Francke, Till A1 - Bronstert, Axel T1 - lumpR 2.0.0: an R package facilitating landscape discretisation for hillslope-based hydrological models JF - Geoscientific model development : an interactive open access journal of the European Geosciences Union N2 - The characteristics of a landscape pose essential factors for hydrological processes. Therefore, an adequate representation of the landscape of a catchment in hydrological models is vital. However, many of such models exist differing, amongst others, in spatial concept and discretisation. The latter constitutes an essential pre-processing step, for which many different algorithms along with numerous software implementations exist. In that context, existing solutions are often model specific, commercial, or depend on commercial back-end software, and allow only a limited or no workflow automation at all. Consequently, a new package for the scientific software and scripting environment R, called lumpR, was developed. lumpR employs an algorithm for hillslope-based landscape discretisation directed to large-scale application via a hierarchical multi-scale approach. The package addresses existing limitations as it is free and open source, easily extendible to other hydrological models, and the workflow can be fully automated. Moreover, it is user-friendly as the direct coupling to a GIS allows for immediate visual inspection and manual adjustment. Sufficient control is furthermore retained via parameter specification and the option to include expert knowledge. Conversely, completely automatic operation also allows for extensive analysis of aspects related to landscape discretisation. In a case study, the application of the package is presented. A sensitivity analysis of the most important discretisation parameters demonstrates its efficient workflow automation. Considering multiple streamflow metrics, the employed model proved reasonably robust to the discretisation parameters. However, parameters determining the sizes of subbasins and hillslopes proved to be more important than the others, including the number of representative hillslopes, the number of attributes employed for the lumping algorithm, and the number of sub-discretisations of the representative hillslopes. Y1 - 2017 U6 - https://doi.org/10.5194/gmd-10-3001-2017 SN - 1991-959X SN - 1991-9603 VL - 10 SP - 3001 EP - 3023 PB - Copernicus CY - Göttingen ER - TY - GEN A1 - Pilz, Tobias A1 - Francke, Till A1 - Bronstert, Axel T1 - lumpR 2.0.0: an R package facilitating landscape discretisation for hillslope-based hydrological models N2 - The characteristics of a landscape pose essential factors for hydrological processes. Therefore, an adequate representation of the landscape of a catchment in hydrological models is vital. However, many of such models exist differing, amongst others, in spatial concept and discretisation. The latter constitutes an essential pre-processing step, for which many different algorithms along with numerous software implementations exist. In that context, existing solutions are often model specific, commercial, or depend on commercial back-end software, and allow only a limited or no workflow automation at all. Consequently, a new package for the scientific software and scripting environment R, called lumpR, was developed. lumpR employs an algorithm for hillslope-based landscape discretisation directed to large-scale application via a hierarchical multi-scale approach. The package addresses existing limitations as it is free and open source, easily extendible to other hydrological models, and the workflow can be fully automated. Moreover, it is user-friendly as the direct coupling to a GIS allows for immediate visual inspection and manual adjustment. Sufficient control is furthermore retained via parameter specification and the option to include expert knowledge. Conversely, completely automatic operation also allows for extensive analysis of aspects related to landscape discretisation. In a case study, the application of the package is presented. A sensitivity analysis of the most important discretisation parameters demonstrates its efficient workflow automation. Considering multiple streamflow metrics, the employed model proved reasonably robust to the discretisation parameters. However, parameters determining the sizes of subbasins and hillslopes proved to be more important than the others, including the number of representative hillslopes, the number of attributes employed for the lumping algorithm, and the number of sub-discretisations of the representative hillslopes. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 389 Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-402880 ER - TY - JOUR A1 - Pilz, Tobias A1 - Francke, Till A1 - Bronstert, Axel T1 - lumpR 2.0.0: an R package facilitating landscape discretisation for hillslope-based hydrological models JF - Geoscientific model development N2 - The characteristics of a landscape pose essential factors for hydrological processes. Therefore, an adequate representation of the landscape of a catchment in hydrological models is vital. However, many of such models exist differing, amongst others, in spatial concept and discretisation. The latter constitutes an essential pre-processing step, for which many different algorithms along with numerous software implementations exist. In that context, existing solutions are often model specific, commercial, or depend on commercial back-end software, and allow only a limited or no workflow automation at all. Consequently, a new package for the scientific software and scripting environment R, called lumpR, was developed. lumpR employs an algorithm for hillslope-based landscape discretisation directed to large-scale application via a hierarchical multi-scale approach. The package addresses existing limitations as it is free and open source, easily extendible to other hydrological models, and the workflow can be fully automated. Moreover, it is user-friendly as the direct coupling to a GIS allows for immediate visual inspection and manual adjustment. Sufficient control is furthermore retained via parameter specification and the option to include expert knowledge. Conversely, completely automatic operation also allows for extensive analysis of aspects related to landscape discretisation. In a case study, the application of the package is presented. A sensitivity analysis of the most important discretisation parameters demonstrates its efficient workflow automation. Considering multiple streamflow metrics, the employed model proved reasonably robust to the discretisation parameters. However, parameters determining the sizes of subbasins and hillslopes proved to be more important than the others, including the number of representative hillslopes, the number of attributes employed for the lumping algorithm, and the number of sub-discretisations of the representative hillslopes. Y1 - 2017 U6 - https://doi.org/10.5194/gmd-10-3001-2017 SN - 1991-959X SN - 1991-9603 VL - 10 SP - 3001 EP - 3023 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Pilz, Tobias A1 - Francke, Till A1 - Baroni, Gabriele A1 - Bronstert, Axel T1 - How to Tailor my process-based hydrological model? BT - dynamic identifiability analysis of flexible model structures JF - Water resources research N2 - In the field of hydrological modeling, many alternative representations of natural processes exist. Choosing specific process formulations when building a hydrological model is therefore associated with a high degree of ambiguity and subjectivity. In addition, the numerical integration of the underlying differential equations and parametrization of model structures influence model performance. Identifiability analysis may provide guidance by constraining the a priori range of alternatives based on observations. In this work, a flexible simulation environment is used to build an ensemble of semidistributed, process-based hydrological model configurations with alternative process representations, numerical integration schemes, and model parametrizations in an integrated manner. The flexible simulation environment is coupled with an approach for dynamic identifiability analysis. The objective is to investigate the applicability of the framework to identify the most adequate model. While an optimal model configuration could not be clearly distinguished, interesting results were obtained when relating model identifiability with hydro-meteorological boundary conditions. For instance, we tested the Penman-Monteith and Shuttleworth & Wallace evapotranspiration models and found that the former performs better under wet and the latter under dry conditions. Parametrization of model structures plays a dominant role as it can compensate for inadequate process representations and poor numerical solvers. Therefore, it was found that numerical solvers of high order of accuracy do often, though not necessarily, lead to better model performance. The proposed coupled framework proved to be a straightforward diagnostic tool for model building and hypotheses testing and shows potential for more in-depth analysis of process implementations and catchment functioning. KW - identifiability analysis KW - flexible model KW - numerics KW - model structure KW - WASA-SED KW - ECHSE Y1 - 2020 U6 - https://doi.org/10.1029/2020WR028042 SN - 0043-1397 SN - 1944-7973 VL - 56 IS - 8 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Pilz, Tobias A1 - Delgado, José Miguel Martins A1 - Voss, Sebastian A1 - Vormoor, Klaus Josef A1 - Francke, Till A1 - Cunha Costa, Alexandre A1 - Martins, Eduardo A1 - Bronstert, Axel T1 - Seasonal drought prediction for semiarid northeast Brazil BT - what is the added value of a process-based hydrological model? JF - Hydrology and Earth System Sciences N2 - The semiarid northeast of Brazil is one of the most densely populated dryland regions in the world and recurrently affected by severe droughts. Thus, reliable seasonal forecasts of streamflow and reservoir storage are of high value for water managers. Such forecasts can be generated by applying either hydrological models representing underlying processes or statistical relationships exploiting correlations among meteorological and hydrological variables. This work evaluates and compares the performances of seasonal reservoir storage forecasts derived by a process-based hydrological model and a statistical approach. Driven by observations, both models achieve similar simulation accuracies. In a hindcast experiment, however, the accuracy of estimating regional reservoir storages was considerably lower using the process-based hydrological model, whereas the resolution and reliability of drought event predictions were similar by both approaches. Further investigations regarding the deficiencies of the process-based model revealed a significant influence of antecedent wetness conditions and a higher sensitivity of model prediction performance to rainfall forecast quality. Within the scope of this study, the statistical model proved to be the more straightforward approach for predictions of reservoir level and drought events at regionally and monthly aggregated scales. However, for forecasts at finer scales of space and time or for the investigation of underlying processes, the costly initialisation and application of a process-based model can be worthwhile. Furthermore, the application of innovative data products, such as remote sensing data, and operational model correction methods, like data assimilation, may allow for an enhanced exploitation of the advanced capabilities of process-based hydrological models. KW - Water Availability KW - Uncertainty Processor KW - Forecasting Framework KW - Sediment Transport KW - Reservoir Networks KW - Jaguaribe Basin KW - Climate KW - Precipitation KW - Nordeste KW - Connectivity Y1 - 2019 U6 - https://doi.org/10.5194/hess-23-1951-2019 SN - 1027-5606 SN - 1607-7938 VL - 23 SP - 1951 EP - 1971 PB - Copernicus Publications CY - Göttingen ER - TY - GEN A1 - Pilz, Tobias A1 - Delgado, José Miguel Martins A1 - Voss, Sebastian A1 - Vormoor, Klaus Josef A1 - Francke, Till A1 - Cunha Costa, Alexandre A1 - Martins, Eduardo A1 - Bronstert, Axel T1 - Seasonal drought prediction for semiarid northeast Brazil BT - what is the added value of a process-based hydrological model? T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - The semiarid northeast of Brazil is one of the most densely populated dryland regions in the world and recurrently affected by severe droughts. Thus, reliable seasonal forecasts of streamflow and reservoir storage are of high value for water managers. Such forecasts can be generated by applying either hydrological models representing underlying processes or statistical relationships exploiting correlations among meteorological and hydrological variables. This work evaluates and compares the performances of seasonal reservoir storage forecasts derived by a process-based hydrological model and a statistical approach. Driven by observations, both models achieve similar simulation accuracies. In a hindcast experiment, however, the accuracy of estimating regional reservoir storages was considerably lower using the process-based hydrological model, whereas the resolution and reliability of drought event predictions were similar by both approaches. Further investigations regarding the deficiencies of the process-based model revealed a significant influence of antecedent wetness conditions and a higher sensitivity of model prediction performance to rainfall forecast quality. Within the scope of this study, the statistical model proved to be the more straightforward approach for predictions of reservoir level and drought events at regionally and monthly aggregated scales. However, for forecasts at finer scales of space and time or for the investigation of underlying processes, the costly initialisation and application of a process-based model can be worthwhile. Furthermore, the application of innovative data products, such as remote sensing data, and operational model correction methods, like data assimilation, may allow for an enhanced exploitation of the advanced capabilities of process-based hydrological models. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 702 KW - Water Availability KW - Uncertainty Processor KW - Forecasting Framework KW - Sediment Transport KW - Reservoir Networks KW - Jaguaribe Basin KW - Climate KW - Precipitation KW - Nordeste KW - Connectivity Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-427950 SN - 1866-8372 IS - 702 ER - TY - JOUR A1 - Pereira, Bruno A1 - Medeiros, Pedro Henrique Augusto A1 - Francke, Till A1 - Ramalho, Geraldo A1 - Förster, Saskia A1 - De Araujo, Jose Carlos T1 - Assessment of the geometry and volumes of small surface water reservoirs by remote sensing in a semi-arid region with high reservoir density JF - Hydrological sciences journal = Journal des sciences hydrologiques N2 - Water fluxes in highly impounded regions are heavily dependent on reservoir properties. However, for large and remote areas, this information is often unavailable. In this study, the geometry and volume of small surface reservoirs in the semi-arid region of Brazil were estimated using terrain and shape attributes extracted by remote sensing. Regression models and data classification were used to predict the volumes, at different water stages, of 312 reservoirs for which topographic information is available. The power function used to describe the reservoir shapes tends to overestimate the volumes; therefore, a modified shape equation was proposed. Among the methods tested, four were recommended based on performance and simplicity, for which the mean absolute percentage errors varied from 24 to 39%, in contrast to the 94% error achieved with the traditional method. Despite the challenge of precisely deriving the flooded areas of reservoirs, water management in highly reservoir-dense environments should benefit from volume prediction based on remote sensing. KW - reservoir volume KW - high-density reservoir network KW - water height-area-volume curve KW - semi-arid KW - remote sensing Y1 - 2019 U6 - https://doi.org/10.1080/02626667.2019.1566727 SN - 0262-6667 SN - 2150-3435 VL - 64 IS - 1 SP - 66 EP - 79 PB - Routledge, Taylor & Francis Group CY - Abingdon ER - TY - JOUR A1 - Müller, Eva Nora A1 - Francke, Till A1 - Batalla Villanueva, Ramon J. A1 - Bronstert, Axel T1 - Modelling the effects of land-use change on runoff and sediment yield for a meso-scale catchment in the Southern Pyrenees N2 - The Southern Pre-Pyrenees experienced a substantial land-use change over the second half of the 20th century owing to the reduction of agricultural activities towards the formation of a more natural forest landscape. The land-use change over the last 50 years with subsequent effects on water and sediment export was modelled with the process-based, spatially semi-distributed WASA-SED model for the meso-scale Canalda catchment in Catalonia, Spain. It was forwarded that the model yielded plausible results for runoff and sediment yield dynamics without the need of calibration, although the model failed to reproduce the shape of the hydrograph and the total discharge of several individual rainstorm events, hence the simulation capabilities are not yet considered sufficient for decision-making purposes for land management. As there are only a very limited amount of measured data available on sediment budgets with altered land-use and climate change settings, the WASA-SED model was used to obtain qualitative estimates on the effects of past and future change scenarios to derive a baseline for hypothesis building and future discussion on the evolution of sediment budgets in such a dryland setting. Simulating the effects of the past land-use change, the model scenarios resulted in a decrease of up to 75% of the annual sediment yield. whereas modelled runoff remained almost constant over the last 50 years. The relative importance of environmental change was evaluated by comparing the impact on sediment export of land-use change, that are driven by socio-economic factors, with climate change projections for changes in the rainfall regime. The modelling results suggest that a 20% decrease in annual rainfall results in a decrease in runoff and sediment yield, thus an ecosystem stabilisation in regard to sediment export which can only be achieved by a substantial land-use change equivalent to a complete afforestation. At the same time, a 20% increase in rainfall causes a large export of water and sediment resources out of the catchment, equivalent to an intensive agricultural use of 100% of the catchment area. For wet years, the effects of agricultural intensification are more pronounced, so that in this case the intensive land-use change has a significantly larger impact on sediment generation than climate change. The WASA-SED model proved capable in quantifying the impacts of actual and potential environmental change, but the reliability of the simulation results is still circumscribed by considerable parameterisation and model uncertainties. Y1 - 2009 UR - http://www.sciencedirect.com/science/journal/03418162 U6 - https://doi.org/10.1016/j.catena.2009.06.007 SN - 0341-8162 ER - TY - JOUR A1 - Mohr, Christian Heinrich A1 - Zimmermann, Andreas A1 - Korup, Oliver A1 - Iroume, A. A1 - Francke, Till A1 - Bronstert, Axel T1 - Seasonal logging, process response, and geomorphic work JF - Earth surface dynamics N2 - Deforestation is a prominent anthropogenic cause of erosive overland flow and slope instability, boosting rates of soil erosion and concomitant sediment flux. Conventional methods of gauging or estimating post-logging sediment flux often focus on annual timescales but overlook potentially important process response on shorter intervals immediately following timber harvest. We resolve such dynamics with non-parametric quantile regression forests (QRF) based on high-frequency (3 min) discharge measurements and sediment concentration data sampled every 30-60 min in similar-sized (similar to 0.1 km(2)) forested Chilean catchments that were logged during either the rainy or the dry season. The method of QRF builds on the random forest algorithm, and combines quantile regression with repeated random sub-sampling of both cases and predictors. The algorithm belongs to the family of decision-tree classifiers, which allow quantifying relevant predictors in high-dimensional parameter space. We find that, where no logging occurred, similar to 80% of the total sediment load was transported during extremely variable runoff events during only 5% of the monitoring period. In particular, dry-season logging dampened the relative role of these rare, extreme sediment-transport events by increasing load efficiency during more efficient moderate events. We show that QRFs outperform traditional sediment rating curves (SRCs) in terms of accurately simulating short-term dynamics of sediment flux, and conclude that QRF may reliably support forest management recommendations by providing robust simulations of post-logging response of water and sediment fluxes at high temporal resolution. Y1 - 2014 U6 - https://doi.org/10.5194/esurf-2-117-2014 SN - 2196-6311 SN - 2196-632X VL - 2 IS - 1 SP - 117 EP - 125 PB - Copernicus CY - Göttingen ER -