TY - GEN A1 - Limberger, Daniel A1 - Gropler, Anne A1 - Buschmann, Stefan A1 - Döllner, Jürgen Roland Friedrich A1 - Wasty, Benjamin T1 - OpenLL BT - an API for Dynamic 2D and 3D Labeling T2 - 22nd International Conference Information Visualisation (IV) N2 - Today's rendering APIs lack robust functionality and capabilities for dynamic, real-time text rendering and labeling, which represent key requirements for 3D application design in many fields. As a consequence, most rendering systems are barely or not at all equipped with respective capabilities. This paper drafts the unified text rendering and labeling API OpenLL intended to complement common rendering APIs, frameworks, and transmission formats. For it, various uses of static and dynamic placement of labels are showcased and a text interaction technique is presented. Furthermore, API design constraints with respect to state-of-the-art text rendering techniques are discussed. This contribution is intended to initiate a community-driven specification of a free and open label library. KW - visualization KW - labeling KW - real-time rendering Y1 - 2018 SN - 978-1-5386-7202-0 U6 - https://doi.org/10.1109/iV.2018.00039 SP - 175 EP - 181 PB - IEEE CY - New York ER - TY - JOUR A1 - Vollmer, Jan Ole A1 - Trapp, Matthias A1 - Schumann, Heidrun A1 - Döllner, Jürgen Roland Friedrich T1 - Hierarchical spatial aggregation for level-of-detail visualization of 3D thematic data JF - ACM transactions on spatial algorithms and systems N2 - Thematic maps are a common tool to visualize semantic data with a spatial reference. Combining thematic data with a geometric representation of their natural reference frame aids the viewer’s ability in gaining an overview, as well as perceiving patterns with respect to location; however, as the amount of data for visualization continues to increase, problems such as information overload and visual clutter impede perception, requiring data aggregation and level-of-detail visualization techniques. While existing aggregation techniques for thematic data operate in a 2D reference frame (i.e., map), we present two aggregation techniques for 3D spatial and spatiotemporal data mapped onto virtual city models that hierarchically aggregate thematic data in real time during rendering to support on-the-fly and on-demand level-of-detail generation. An object-based technique performs aggregation based on scene-specific objects and their hierarchy to facilitate per-object analysis, while the scene-based technique aggregates data solely based on spatial locations, thus supporting visual analysis of data with arbitrary reference geometry. Both techniques can apply different aggregation functions (mean, minimum, and maximum) for ordinal, interval, and ratio-scaled data and can be easily extended with additional functions. Our implementation utilizes the programmable graphics pipeline and requires suitably encoded data, i.e., textures or vertex attributes. We demonstrate the application of both techniques using real-world datasets, including solar potential analyses and the propagation of pressure waves in a virtual city model. KW - Level-of-detail visualization KW - spatial aggregation KW - real-time rendering Y1 - 2018 U6 - https://doi.org/10.1145/3234506 SN - 2374-0353 SN - 2374-0361 VL - 4 IS - 3 PB - Association for Computing Machinery CY - New York ER - TY - THES A1 - Richter, Rico T1 - Concepts and techniques for processing and rendering of massive 3D point clouds T1 - Konzepte und Techniken für die Verarbeitung und das Rendering von Massiven 3D-Punktwolken N2 - Remote sensing technology, such as airborne, mobile, or terrestrial laser scanning, and photogrammetric techniques, are fundamental approaches for efficient, automatic creation of digital representations of spatial environments. For example, they allow us to generate 3D point clouds of landscapes, cities, infrastructure networks, and sites. As essential and universal category of geodata, 3D point clouds are used and processed by a growing number of applications, services, and systems such as in the domains of urban planning, landscape architecture, environmental monitoring, disaster management, virtual geographic environments as well as for spatial analysis and simulation. While the acquisition processes for 3D point clouds become more and more reliable and widely-used, applications and systems are faced with more and more 3D point cloud data. In addition, 3D point clouds, by their very nature, are raw data, i.e., they do not contain any structural or semantics information. Many processing strategies common to GIS such as deriving polygon-based 3D models generally do not scale for billions of points. GIS typically reduce data density and precision of 3D point clouds to cope with the sheer amount of data, but that results in a significant loss of valuable information at the same time. This thesis proposes concepts and techniques designed to efficiently store and process massive 3D point clouds. To this end, object-class segmentation approaches are presented to attribute semantics to 3D point clouds, used, for example, to identify building, vegetation, and ground structures and, thus, to enable processing, analyzing, and visualizing 3D point clouds in a more effective and efficient way. Similarly, change detection and updating strategies for 3D point clouds are introduced that allow for reducing storage requirements and incrementally updating 3D point cloud databases. In addition, this thesis presents out-of-core, real-time rendering techniques used to interactively explore 3D point clouds and related analysis results. All techniques have been implemented based on specialized spatial data structures, out-of-core algorithms, and GPU-based processing schemas to cope with massive 3D point clouds having billions of points. All proposed techniques have been evaluated and demonstrated their applicability to the field of geospatial applications and systems, in particular for tasks such as classification, processing, and visualization. Case studies for 3D point clouds of entire cities with up to 80 billion points show that the presented approaches open up new ways to manage and apply large-scale, dense, and time-variant 3D point clouds as required by a rapidly growing number of applications and systems. N2 - Fernerkundungstechnologien wie luftgestütztes, mobiles oder terrestrisches Laserscanning und photogrammetrische Techniken sind grundlegende Ansätze für die effiziente, automatische Erstellung von digitalen Repräsentationen räumlicher Umgebungen. Sie ermöglichen uns zum Beispiel die Erzeugung von 3D-Punktwolken für Landschaften, Städte, Infrastrukturnetze und Standorte. 3D-Punktwolken werden als wesentliche und universelle Kategorie von Geodaten von einer wachsenden Anzahl an Anwendungen, Diensten und Systemen genutzt und verarbeitet, zum Beispiel in den Bereichen Stadtplanung, Landschaftsarchitektur, Umweltüberwachung, Katastrophenmanagement, virtuelle geographische Umgebungen sowie zur räumlichen Analyse und Simulation. Da die Erfassungsprozesse für 3D-Punktwolken immer zuverlässiger und verbreiteter werden, sehen sich Anwendungen und Systeme mit immer größeren 3D-Punktwolken-Daten konfrontiert. Darüber hinaus enthalten 3D-Punktwolken als Rohdaten von ihrer Art her keine strukturellen oder semantischen Informationen. Viele GIS-übliche Verarbeitungsstrategien, wie die Ableitung polygonaler 3D-Modelle, skalieren in der Regel nicht für Milliarden von Punkten. GIS reduzieren typischerweise die Datendichte und Genauigkeit von 3D-Punktwolken, um mit der immensen Datenmenge umgehen zu können, was aber zugleich zu einem signifikanten Verlust wertvoller Informationen führt. Diese Arbeit präsentiert Konzepte und Techniken, die entwickelt wurden, um massive 3D-Punktwolken effizient zu speichern und zu verarbeiten. Hierzu werden Ansätze für die Objektklassen-Segmentierung vorgestellt, um 3D-Punktwolken mit Semantik anzureichern; so lassen sich beispielsweise Gebäude-, Vegetations- und Bodenstrukturen identifizieren, wodurch die Verarbeitung, Analyse und Visualisierung von 3D-Punktwolken effektiver und effizienter durchführbar werden. Ebenso werden Änderungserkennungs- und Aktualisierungsstrategien für 3D-Punktwolken vorgestellt, mit denen Speicheranforderungen reduziert und Datenbanken für 3D-Punktwolken inkrementell aktualisiert werden können. Des Weiteren beschreibt diese Arbeit Out-of-Core Echtzeit-Rendering-Techniken zur interaktiven Exploration von 3D-Punktwolken und zugehöriger Analyseergebnisse. Alle Techniken wurden mit Hilfe spezialisierter räumlicher Datenstrukturen, Out-of-Core-Algorithmen und GPU-basierter Verarbeitungs-schemata implementiert, um massiven 3D-Punktwolken mit Milliarden von Punkten gerecht werden zu können. Alle vorgestellten Techniken wurden evaluiert und die Anwendbarkeit für Anwendungen und Systeme, die mit raumbezogenen Daten arbeiten, wurde insbesondere für Aufgaben wie Klassifizierung, Verarbeitung und Visualisierung demonstriert. Fallstudien für 3D-Punktwolken von ganzen Städten mit bis zu 80 Milliarden Punkten zeigen, dass die vorgestellten Ansätze neue Wege zur Verwaltung und Verwendung von großflächigen, dichten und zeitvarianten 3D-Punktwolken eröffnen, die von einer wachsenden Anzahl an Anwendungen und Systemen benötigt werden. KW - 3D point clouds KW - 3D-Punktwolken KW - real-time rendering KW - Echtzeit-Rendering KW - 3D visualization KW - 3D-Visualisierung KW - classification KW - Klassifizierung KW - change detection KW - Veränderungsanalyse KW - LiDAR KW - LiDAR KW - remote sensing KW - Fernerkundung KW - mobile mapping KW - Mobile-Mapping KW - Big Data KW - Big Data KW - GPU KW - GPU KW - laserscanning KW - Laserscanning Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-423304 ER - TY - JOUR A1 - Semmo, Amir A1 - Trapp, Matthias A1 - Jobst, Markus A1 - Döllner, Jürgen Roland Friedrich T1 - Cartography-Oriented Design of 3D Geospatial Information Visualization - Overview and Techniques JF - The cartographic journal N2 - In economy, society and personal life map-based interactive geospatial visualization becomes a natural element of a growing number of applications and systems. The visualization of 3D geospatial information, however, raises the question how to represent the information in an effective way. Considerable research has been done in technology-driven directions in the fields of cartography and computer graphics (e.g., design principles, visualization techniques). Here, non-photorealistic rendering (NPR) represents a promising visualization category - situated between both fields - that offers a large number of degrees for the cartography-oriented visual design of complex 2D and 3D geospatial information for a given application context. Still today, however, specifications and techniques for mapping cartographic design principles to the state-of-the-art rendering pipeline of 3D computer graphics remain to be explored. This paper revisits cartographic design principles for 3D geospatial visualization and introduces an extended 3D semiotic model that complies with the general, interactive visualization pipeline. Based on this model, we propose NPR techniques to interactively synthesize cartographic renditions of basic feature types, such as terrain, water, and buildings. In particular, it includes a novel iconification concept to seamlessly interpolate between photorealistic and cartographic representations of 3D landmarks. Our work concludes with a discussion of open challenges in this field of research, including topics, such as user interaction and evaluation. KW - 3D information visualization KW - 3D semiotic model KW - cartographic design KW - user interaction KW - real-time rendering Y1 - 2015 U6 - https://doi.org/10.1080/00087041.2015.1119462 SN - 0008-7041 SN - 1743-2774 VL - 52 IS - 2 SP - 95 EP - 106 PB - Routledge, Taylor & Francis Group CY - Leeds ER - TY - JOUR A1 - Semmo, Amir A1 - Hildebrandt, Dieter A1 - Trapp, Matthias A1 - Döllner, Jürgen Roland Friedrich T1 - Concepts for cartography-oriented visualization of virtual 3D city models JF - Photogrammetrie, Fernerkundung, Geoinformation N2 - Virtual 3D city models serve as an effective medium with manifold applications in geoinformation systems and services. To date, most 3D city models are visualized using photorealistic graphics. But an effective communication of geoinformation significantly depends on how important information is designed and cognitively processed in the given application context. One possibility to visually emphasize important information is based on non-photorealistic rendering, which comprehends artistic depiction styles and is characterized by its expressiveness and communication aspects. However, a direct application of non-photorealistic rendering techniques primarily results in monotonic visualization that lacks cartographic design aspects. In this work, we present concepts for cartography-oriented visualization of virtual 3D city models. These are based on coupling non-photorealistic rendering techniques and semantics-based information for a user, context, and media-dependent representation of thematic information. This work highlights challenges for cartography-oriented visualization of 3D geovirtual environments, presents stylization techniques and discusses their applications and ideas for a standardized visualization. In particular, the presented concepts enable a real-time and dynamic visualization of thematic geoinformation. KW - 3D city models KW - cartography-oriented visualization KW - style description languages KW - real-time rendering Y1 - 2012 U6 - https://doi.org/10.1127/1432-8364/2012/0131 SN - 1432-8364 IS - 4 SP - 455 EP - 465 PB - Schweizerbart CY - Stuttgart ER -