TY - JOUR A1 - Schwarze, Thomas A1 - Schneider, Radu A1 - Riemer, Janine A1 - Holdt, Hans-Jürgen T1 - A Highly K+-Selective Fluorescent Probe - Tuning the K+-Complex Stability and the K+/Na+ Selectivity by Varying the Lariat-Alkoxy Unit of a Phenylaza[18]crown-6 Ionophore JF - Chemistry : an Asian journal ; an ACES journal N2 - A desirable goal is to synthesize easily accessible and highly K+/Na+-selective fluoroionophores to monitor physiological K+ levels in vitro and in vivo. Therefore, highly K+/Na+-selective ionophores have to be developed. Herein, we obtained in a sequence of only four synthetic steps a set of K+-responsive fluorescent probes 4, 5 and 6. In a systematic study, we investigated the influence of the alkoxy substitution in ortho position of the aniline moiety in -conjugated aniline-1,2,3-triazole-coumarin-fluoroionophores 4, 5 and 6 [R=MeO (4), EtO (5) and iPrO (6)] towards the K+-complex stability and K+/Na+ selectivity. The highest K+-complex stability showed fluoroionophore 4 with a dissociation constant K-d of 19mm, but the K-d value increases to 31mm in combined K+/Na+ solutions, indicating a poor K+/Na+ selectivity. By contrast, 6 showed even in the presence of competitive Na+ ions equal K-d values (K-d(K+)=45mm and K-d(K+/Na+)=45mm) and equal K+-induced fluorescence enhancement factors (FEFs=2.3). Thus, the fluorescent probe 6 showed an outstanding K+/Na+ selectivity and is a suitable fluorescent tool to measure physiological K+ levels in the range of 10-80mm in vitro. Further, the isopropoxy-substituted N-phenylaza[18]crown-6 ionophore in 6 is a highly K+-selective building block with a feasible synthetic route. KW - crown compounds KW - fluorescence KW - fluorescent probes KW - potassium KW - sodium Y1 - 2016 U6 - https://doi.org/10.1002/asia.201500956 SN - 1861-4728 SN - 1861-471X VL - 11 SP - 241 EP - 247 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Schwarze, Thomas A1 - Mueller, Holger A1 - Schmidt, Darya A1 - Riemer, Janine A1 - Holdt, Hans-Jürgen T1 - Design of Na+-Selective Fluorescent Probes: A Systematic Study of the Na+-Complex Stability and the Na+/K+ Selectivity in Acetonitrile and Water JF - Chemistry - a European journal N2 - There is a tremendous demand for highly Na+-selective fluoroionophores to monitor the top analyte Na+ in life science. Here, we report a systematic route to develop highly Na+/K+ selective fluorescent probes. Thus, we synthesized a set of fluoroionophores 1, 3, 4, 5, 8 and 9 (see Scheme 1) to investigate the Na+/K+ selectivity and Na(+-)complex stability in CH3CN and H2O. These Na+-probes bear different 15-crown-5 moieties to bind Na+ stronger than K+. In the set of the diethylaminocoumarin-substituted fluoroionophores 1-5, the following trend of fluorescence quenching 1 > 3 > 2 > 4 > 5 in CH3CN was observed. Therefore, the flexibility of the aza-15-crown-5 moieties in 1-4 determines the conjugation of the nitrogen lone pair with the aromatic ring. As a consequence, 1 showed in CH3CN the highest Na+-induced fluorescence enhancement (FE) by a factor of 46.5 and a weaker K+ induced FE of 3.7. The Na+-complex stability of 1-4 in CH3CN is enhanced in the following order of 2 > 4 > 3 > 1, assuming that the O-atom of the methoxy group in the ortho-position, as shown in 2, strengthened the Na+-complex formation. Furthermore, we found for the N( o-methoxyphenyl) aza-15-crown-5 substituted fluoroionophores 2, 8 and 9 in H2O, an enhanced Na+-complex stability in the following order 8 > 2 > 9 and an increased Na+/K+ selectivity in the reverse order 9 > 2 > 8. Notably, the Na+-induced FE of 8 (FEF = 10.9), 2 (FEF = 5.0) and 9 (FEF = 2.0) showed a similar trend associated with a decreased K+-induced FE [8 (FEF = 2.7) > 2 (FEF = 1.5) > 9 (FEF = 1.1)]. Here, the Na+-complex stability and Na+/K+ selectivity is also influenced by the fluorophore moiety. Thus, fluorescent probe 8 (K-d = 48 mm) allows high-contrast, sensitive, and selective Na+ measurements over extracellular K+ levels. A higher Na+/K+ selectivity showed fluorescent probe 9, but also a higher Kd value of 223 mm. Therefore, 9 is a suitable tool to measure Na+ concentrations up to 300 mm at a fluorescence emission of 614 nm. KW - crown compounds KW - fluorescence KW - fluorescent probes KW - potassium KW - sodium Y1 - 2017 U6 - https://doi.org/10.1002/chem.201605986 SN - 0947-6539 SN - 1521-3765 VL - 23 SP - 7255 EP - 7263 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Schwarze, Thomas A1 - Riemer, Janine T1 - Highly K+ selective probes with fluorescence emission wavelengths higher than 500 nm in water JF - ChemistrySelect N2 - Herein, we report on the synthesis of highly K+/Na+ selective fluorescent probes in a feasible number of synthetic steps. These K+ selective fluorescent probes, so called fluoroionophores, 1 and 2 consists of different highly K+/Na+ selective building blocks the alkoxy-substituted N-phenylaza-18-crown-6 lariat ethers (ionophores) and "green" (cf. coumarin unit in 1) or "red" (cf. nile red unit in 2) fluorescent moieties (fluorophores). The fluorescent probes 1 and 2 show K+ induced fluorescence enhancement factors of 4.1 for 1 and 1.9 for 2 and dissociation constants for the corresponding K+ complexes of 43 mM (1+K+) and 18 mM (2+K+) in buffered aqueous solution. The fluorescence signal of 1 and 2 is changed by less than 5 % by pH values in the range of 6.8 to 8.8. Thus, 1 and 2 are capable fluorescent tools to determine extracellular K+ levels by fluorescence enhancements at wavelengths higher than 500 nm. KW - potassium KW - sodium KW - fluorescence KW - selectivity KW - probes Y1 - 2020 U6 - https://doi.org/10.1002/slct.202003785 SN - 2365-6549 VL - 5 IS - 42 SP - 13174 EP - 13178 PB - Wiley-VCH CY - Weinheim ER - TY - GEN A1 - Schwarze, Thomas A1 - Riemer, Janine A1 - Müller, Holger A1 - John, Leonard A1 - Holdt, Hans‐Jürgen A1 - Wessig, Pablo T1 - Na+ Selective Fluorescent Tools Based on Fluorescence Intensity Enhancements, Lifetime Changes, and on a Ratiometric Response T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Over the years, we developed highly selective fluorescent probes for K+ in water, which show K+-induced fluorescence intensity enhancements, lifetime changes, or a ratiometric behavior at two emission wavelengths (cf. Scheme 1, K1-K4). In this paper, we introduce selective fluorescent probes for Na+ in water, which also show Na+ induced signal changes, which are analyzed by diverse fluorescence techniques. Initially, we synthesized the fluorescent probes 2, 4, 5, 6 and 10 for a fluorescence analysis by intensity enhancements at one wavelength by varying the Na+ responsive ionophore unit and the fluorophore moiety to adjust different K-d values for an intra- or extracellular Na+ analysis. Thus, we found that 2, 4 and 5 are Na+ selective fluorescent tools, which are able to measure physiologically important Na+ levels at wavelengths higher than 500 nm. Secondly, we developed the fluorescent probes 7 and 8 to analyze precise Na+ levels by fluorescence lifetime changes. Herein, only 8 (K-d=106 mm) is a capable fluorescent tool to measure Na+ levels in blood samples by lifetime changes. Finally, the fluorescent probe 9 was designed to show a Na+ induced ratiometric fluorescence behavior at two emission wavelengths. As desired, 9 (K-d=78 mm) showed a ratiometric fluorescence response towards Na+ ions and is a suitable tool to measure physiologically relevant Na+ levels by the intensity change of two emission wavelengths at 404 nm and 492 nm. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1136 KW - crown compounds KW - fluorescence lifetime KW - fluorescent probes KW - ratiometric KW - sodium Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-437482 SN - 1866-8372 IS - 1136 ER - TY - JOUR A1 - Schwarze, Thomas A1 - Riemer, Janine A1 - Müller, Holger A1 - John, Leonard A1 - Holdt, Hans-Jürgen A1 - Wessig, Pablo T1 - Na+ Selective Fluorescent Tools Based on Fluorescence Intensity Enhancements, Lifetime Changes, and on a Ratiometric Response JF - Chemistry - a European journal N2 - Over the years, we developed highly selective fluorescent probes for K+ in water, which show K+-induced fluorescence intensity enhancements, lifetime changes, or a ratiometric behavior at two emission wavelengths (cf. Scheme 1, K1-K4). In this paper, we introduce selective fluorescent probes for Na+ in water, which also show Na+ induced signal changes, which are analyzed by diverse fluorescence techniques. Initially, we synthesized the fluorescent probes 2, 4, 5, 6 and 10 for a fluorescence analysis by intensity enhancements at one wavelength by varying the Na+ responsive ionophore unit and the fluorophore moiety to adjust different K-d values for an intra- or extracellular Na+ analysis. Thus, we found that 2, 4 and 5 are Na+ selective fluorescent tools, which are able to measure physiologically important Na+ levels at wavelengths higher than 500 nm. Secondly, we developed the fluorescent probes 7 and 8 to analyze precise Na+ levels by fluorescence lifetime changes. Herein, only 8 (K-d=106 mm) is a capable fluorescent tool to measure Na+ levels in blood samples by lifetime changes. Finally, the fluorescent probe 9 was designed to show a Na+ induced ratiometric fluorescence behavior at two emission wavelengths. As desired, 9 (K-d=78 mm) showed a ratiometric fluorescence response towards Na+ ions and is a suitable tool to measure physiologically relevant Na+ levels by the intensity change of two emission wavelengths at 404 nm and 492 nm. KW - crown compounds KW - fluorescence lifetime KW - fluorescent probes KW - ratiometric KW - sodium Y1 - 2019 U6 - https://doi.org/10.1002/chem.201902536 SN - 0947-6539 SN - 1521-3765 VL - 25 IS - 53 SP - 12412 EP - 12422 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Dünkelberg, Sophie A1 - Maywald, Martina A1 - Schmitt, Anne Kristina A1 - Schwerdtle, Tanja A1 - Meyer, Sören A1 - Rink, Lothar T1 - The interaction of sodium and zinc in the priming of T cell subpopulations regarding Th17 and Treg cells JF - Molecular nutrition & food research : bioactivity, chemistry, immunology, microbiology, safety, technology N2 - Scope: Nutrition is a critical determinant of a functional immune system. The aim of this study is to investigate the molecular mechanisms by which immune cells are influenced by zinc and sodium. Methods and Results: Mixed lymphocyte cultures and Jurkat cells are generated and incubated with zinc, sodium, or a combination of both for further tests. Zinc induces the number of regulatory T cells (Treg) and decreases T helper 17 cells (Th17), and sodium has the opposite effect. The transforming growth factor beta receptor signaling pathway is also enhanced by zinc and reduced by sodium as indicated by contrary phosphoSmad 2/3 induction. Antagonistic effects can also be seen on zinc transporter and metallothionein-1 (MT-1) mRNA expression: zinc declines Zip10 mRNA expression while sodium induces it, whereas MT-1 mRNA expression is induced by zinc while it is reduced by sodium. Conclusion: This data indicate that zinc and sodium display opposite effects regarding Treg and Th17 induction in MLC, respectively, resulting in a contrary effect on the immune system. Additionally, it reveals a direct interaction of zinc and sodium in the priming of T cell subpopulations and shows that Zip10 and MT-1 play a significant role in those differentiation pathways. KW - Foxp3 KW - regulatory T cells KW - sodium KW - T helper 17 cells KW - zinc Y1 - 2020 U6 - https://doi.org/10.1002/mnfr.201900245 SN - 1613-4133 VL - 64 IS - 2 PB - Wiley-VCH CY - Weinheim ER -