TY - JOUR A1 - Eccard, Jana A1 - Liesenjohann, Thilo A1 - Dammhahn, Melanie T1 - Among-individual differences in foraging modulate resource exploitation under perceived predation risk JF - Oecologia N2 - Foraging is risky and involves balancing the benefits of resource acquisition with costs of predation. Optimal foraging theory predicts where, when and how long to forage in a given spatiotemporal distribution of risks and resources. However, significant variation in foraging behaviour and resource exploitation remain unexplained. Using single foragers in artificial landscapes of perceived risks and resources with diminishing returns, we aimed to test whether foraging behaviour and resource exploitation are adjusted to risk level, vary with risk during different components of foraging, and (co)vary among individuals. We quantified foraging behaviour and resource exploitation for 21 common voles (Microtus arvalis). By manipulating ground cover, we created simple landscapes of two food patches varying in perceived risk during feeding in a patch and/or while travelling between patches. Foraging of individuals was variable and adjusted to risk level and type. High risk during feeding reduced feeding duration and food consumption more strongly than risk while travelling. Risk during travelling modified the risk effects of feeding for changes between patches and resulting evenness of resource exploitation. Across risk conditions individuals differed consistently in when and how long they exploited resources and exposed themselves to risk. These among-individual differences in foraging behaviour were associated with consistent patterns of resource exploitation. Thus, different strategies in foraging-under-risk ultimately lead to unequal payoffs and might affect lower trophic levels in food webs. Inter-individual differences in foraging behaviour, i.e. foraging personalities, are an integral part of foraging behaviour and need to be fully integrated into optimal foraging theory. KW - animal personality KW - giving-up density KW - intra-specific trait variation KW - landscape of fear KW - optimal foraging KW - predation risk KW - resource KW - exploitation Y1 - 2020 U6 - https://doi.org/10.1007/s00442-020-04773-y SN - 0029-8549 SN - 1432-1939 VL - 194 IS - 4 SP - 621 EP - 634 PB - Springer CY - Berlin ER - TY - GEN A1 - Dammhahn, Melanie A1 - Randriamoria, Toky M. A1 - Goodman, Steven M. T1 - Broad and flexible stable isotope niches in invasive non-native Rattus spp. in anthropogenic and natural habitats of central eastern Madagascar T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - Background: Rodents of the genus Rattus are among the most pervasive and successful invasive species, causing major vicissitudes in native ecological communities. A broad and flexible generalist diet has been suggested as key to the invasion success of Rattus spp. Here, we use an indirect approach to better understand foraging niche width, plasticity, and overlap within and between introduced Rattus spp. in anthropogenic habitats and natural humid forests of Madagascar. Results: Based on stable carbon and nitrogen isotope values measured in hair samples of 589 individual rodents, we found that Rattus rattus had an extremely wide foraging niche, encompassing the isotopic space covered by a complete endemic forest-dwelling Malagasy small mammal community. Comparisons of Bayesian standard ellipses, as well as (multivariate) mixed-modeling analyses, revealed that the stable isotope niche of R. rattus tended to change seasonally and differed between natural forests and anthropogenic habitats, indicating plasticity in feeding niches. In co-occurrence, R. rattus and Rattus norvegicus partitioned feeding niches. Isotopic mismatch of signatures of individual R. rattus and the habitat in which they were captured, indicate frequent dispersal movements for this species between natural forest and anthropogenic habitats. Conclusions: Since R. rattus are known to transmit a number of zoonoses, potentially affecting communities of endemic small mammals, as well as humans, these movements presumably increase transmission potential. Our results suggest that due to their generalist diet and potential movement between natural forest and anthropogenic habitats, Rattus spp. might affect native forest-dependent Malagasy rodents as competitors, predators, and disease vectors. The combination of these effects helps explain the invasion success of Rattus spp. and the detrimental effects of this genus on the endemic Malagasy rodent fauna. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 722 KW - Bayesian standard ellipse KW - coexistence KW - habitat use KW - humid forest KW - invasion ecology KW - invasive species KW - Rattus rattus KW - Rattus norvegicus KW - rodents KW - fur KW - stable carbon isotope KW - stable nitrogen isotope Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-429419 SN - 1866-8372 IS - 722 ER - TY - JOUR A1 - Dammhahn, Melanie A1 - Randriamoria, Toky M. A1 - Goodman, Steven M. T1 - Broad and flexible stable isotope niches in invasive non-native Rattus spp. in anthropogenic and natural habitats of central eastern Madagascar JF - BMC ecology N2 - Background: Rodents of the genus Rattus are among the most pervasive and successful invasive species, causing major vicissitudes in native ecological communities. A broad and flexible generalist diet has been suggested as key to the invasion success of Rattus spp. Here, we use an indirect approach to better understand foraging niche width, plasticity, and overlap within and between introduced Rattus spp. in anthropogenic habitats and natural humid forests of Madagascar. Results: Based on stable carbon and nitrogen isotope values measured in hair samples of 589 individual rodents, we found that Rattus rattus had an extremely wide foraging niche, encompassing the isotopic space covered by a complete endemic forest-dwelling Malagasy small mammal community. Comparisons of Bayesian standard ellipses, as well as (multivariate) mixed-modeling analyses, revealed that the stable isotope niche of R. rattus tended to change seasonally and differed between natural forests and anthropogenic habitats, indicating plasticity in feeding niches. In co-occurrence, R. rattus and Rattus norvegicus partitioned feeding niches. Isotopic mismatch of signatures of individual R. rattus and the habitat in which they were captured, indicate frequent dispersal movements for this species between natural forest and anthropogenic habitats. Conclusions: Since R. rattus are known to transmit a number of zoonoses, potentially affecting communities of endemic small mammals, as well as humans, these movements presumably increase transmission potential. Our results suggest that due to their generalist diet and potential movement between natural forest and anthropogenic habitats, Rattus spp. might affect native forest-dependent Malagasy rodents as competitors, predators, and disease vectors. The combination of these effects helps explain the invasion success of Rattus spp. and the detrimental effects of this genus on the endemic Malagasy rodent fauna. KW - Bayesian standard ellipse KW - Coexistence KW - Habitat use KW - Humid forest KW - Invasion ecology KW - Invasive species KW - Rattus rattus KW - Rattus norvegicus KW - Rodents KW - Fur KW - Stable carbon isotope KW - Stable nitrogen isotope Y1 - 2017 U6 - https://doi.org/10.1186/s12898-017-0125-0 SN - 1472-6785 VL - 17 PB - BioMed Central CY - London ER - TY - GEN A1 - Dammhahn, Melanie A1 - Rakotondramanana, Claude Fabienne A1 - Goodman, Steven M. T1 - Coexistence of morphologically similar bats (Vespertilionidae) on Madagascar BT - stable isotopes reveal fine-grained niche differentiation among cryptic species T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Based on niche theory, closely related and morphologically similar species are not predicted to coexist due to overlap in resource and habitat use. Local assemblages of bats often contain cryptic taxa, which co-occur despite notable similarities in morphology and ecology. We measured in two different habitat types on Madagascar levels of stable carbon and nitrogen isotopes in hair (n = 103) and faeces (n = 57) of cryptic Vespertilionidae taxa to indirectly examine whether fine-grained trophic niche differentiation explains their coexistence. In the dry deciduous forest (Kirindy), six sympatric species ranged over 6.0% in delta N-15, i.e. two trophic levels, and 4.2% in delta C-13 with a community mean of 11.3% in delta N-15 and - 21.0% in delta C-13. In the mesic forest (Antsahabe), three sympatric species ranged over one trophic level (delta N-15: 2.4%, delta C-13: 1.0%) with a community mean of 8.0% delta N-15 and - 21.7% in delta C-13. Multivariate analyses and residual permutation of Euclidian distances in delta C-13- delta N-15 bi-plots revealed in both communities distinct stable isotope signatures and species separation for the hair samples among coexisting Vespertilionidae. Intraspecific variation in faecal and hair stable isotopes did not indicate that seasonal migration might relax competition and thereby facilitate the local co-occurrence of sympatric taxa. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 590 KW - Chiroptera KW - community structure KW - congeneric species KW - ecological niches KW - migration KW - Neoromicia KW - Pipistrellus KW - Scotophilus KW - stable carbon KW - stable nitrogen Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-414729 SN - 1866-8372 IS - 590 ER - TY - JOUR A1 - Dammhahn, Melanie A1 - Rakotondramanana, Claude Fabienne A1 - Goodman, Steven M. T1 - Coexistence of morphologically similar bats (Vespertilionidae) on Madagascar: stable isotopes reveal fine-grained niche differentiation among cryptic species JF - Journal of tropical ecology N2 - Based on niche theory, closely related and morphologically similar species are not predicted to coexist due to overlap in resource and habitat use. Local assemblages of bats often contain cryptic taxa, which co-occur despite notable similarities in morphology and ecology. We measured in two different habitat types on Madagascar levels of stable carbon and nitrogen isotopes in hair (n = 103) and faeces (n = 57) of cryptic Vespertilionidae taxa to indirectly examine whether fine-grained trophic niche differentiation explains their coexistence. In the dry deciduous forest (Kirindy), six sympatric species ranged over 6.0% in delta N-15, i.e. two trophic levels, and 4.2% in delta C-13 with a community mean of 11.3% in delta N-15 and - 21.0% in delta C-13. In the mesic forest (Antsahabe), three sympatric species ranged over one trophic level (delta N-15: 2.4%, delta C-13: 1.0%) with a community mean of 8.0% delta N-15 and - 21.7% in delta C-13. Multivariate analyses and residual permutation of Euclidian distances in delta C-13- delta N-15 bi-plots revealed in both communities distinct stable isotope signatures and species separation for the hair samples among coexisting Vespertilionidae. Intraspecific variation in faecal and hair stable isotopes did not indicate that seasonal migration might relax competition and thereby facilitate the local co-occurrence of sympatric taxa. KW - Chiroptera KW - community structure KW - congeneric species KW - ecological niches KW - migration KW - Neoromicia KW - Pipistrellus KW - Scotophilus KW - stable carbon KW - stable nitrogen Y1 - 2015 U6 - https://doi.org/10.1017/S0266467414000741 SN - 0266-4674 SN - 1469-7831 VL - 31 SP - 153 EP - 164 PB - Cambridge Univ. Press CY - New York ER - TY - JOUR A1 - Mazza, Valeria A1 - Dammhahn, Melanie A1 - Eccard, Jana A1 - Palme, Rupert A1 - Zaccaroni, Marco A1 - Jacob, Jens T1 - Coping with style: individual differences in responses to environmental variation JF - Behavioral ecology and sociobiology N2 - Between-individual differences in coping with stress encompass neurophysiological, cognitive and behavioural reactions. The coping style model proposes two alternative response patterns to challenges that integrate these types of reactions. The “proactive strategy” combines a general fight-or-flight response and inflexibility in learning with a relatively low HPA (hypothalamic–pituitary–adrenal) response. The “reactive strategy” includes risk aversion, flexibility in learning and an enhanced HPA response. Although numerous studies have investigated the possible covariance of cognitive, behavioural and physiological responses, findings are still mixed. In the present study, we tested the predictions of the coping style model in an unselected population of bank voles (Myodes glareolus) (N = 70). We measured the voles’ boldness, activity, speed and flexibility in learning and faecal corticosterone metabolite levels under three conditions (holding in indoor cages, in outdoor enclosures and during open field test). Individuals were moderately consistent in their HPA response across situations. Proactive voles had significantly lower corticosterone levels than reactive conspecifics in indoor and outdoor conditions. However, we could not find any co-variation between cognitive and behavioural traits and corticosterone levels in the open field test. Our results partially support the original coping style model but suggest a more complex relationship between cognitive, behavioural and endocrine responses than was initially proposed. KW - Coping styles KW - Faecal glucocorticoid metabolites KW - Learning KW - Stress KW - Personality KW - Rodent Y1 - 2019 U6 - https://doi.org/10.1007/s00265-019-2760-2 SN - 0340-5443 SN - 1432-0762 VL - 73 IS - 10 PB - Springer CY - New York ER - TY - JOUR A1 - Mazza, Valeria A1 - Czyperreck, Inken A1 - Eccard, Jana A1 - Dammhahn, Melanie T1 - Cross-Context Responses to Novelty in Rural and Urban Small Mammals JF - Frontiers in Ecology and Evolution N2 - The Anthropocene is the era of urbanization. The accelerating expansion of cities occurs at the expense of natural reservoirs of biodiversity and presents animals with challenges for which their evolutionary past might not have prepared them. Cognitive and behavioral adjustments to novelty could promote animals’ persistence under these altered conditions. We investigated the structure of, and covariance between, different aspects of responses to novelty in rural and urban small mammals of two non-commensal rodent species. We ran replicated experiments testing responses to three novelty types (object, food, or space) of 47 individual common voles (Microtus arvalis) and 41 individual striped field mice (Apodemus agrarius). We found partial support for the hypothesis that responses to novelty are structured, clustering (i) speed of responses, (ii) intensity of responses, and (iii) responses to food into separate dimensions. Rural and urban small mammals did not differ in most responses to novelty, suggesting that urban habitats do not reduce neophobia in these species. Further studies investigating whether comparable response patters are found throughout different stages of colonization, and along synurbanization processes of different duration, will help illuminate the dynamics of animals’ cognitive adjustments to urban life. KW - animal cognition KW - anthropogenic environment KW - HIREC KW - novelty KW - neophobia KW - neophilia KW - rodents KW - urbanization Y1 - 2021 U6 - https://doi.org/10.3389/fevo.2021.661971 SN - 2296-701X VL - 9 PB - Frontiers Media CY - Lausanne ER - TY - GEN A1 - Mazza, Valeria A1 - Czyperreck, Inken A1 - Eccard, Jana A1 - Dammhahn, Melanie T1 - Cross-Context Responses to Novelty in Rural and Urban Small Mammals T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The Anthropocene is the era of urbanization. The accelerating expansion of cities occurs at the expense of natural reservoirs of biodiversity and presents animals with challenges for which their evolutionary past might not have prepared them. Cognitive and behavioral adjustments to novelty could promote animals’ persistence under these altered conditions. We investigated the structure of, and covariance between, different aspects of responses to novelty in rural and urban small mammals of two non-commensal rodent species. We ran replicated experiments testing responses to three novelty types (object, food, or space) of 47 individual common voles (Microtus arvalis) and 41 individual striped field mice (Apodemus agrarius). We found partial support for the hypothesis that responses to novelty are structured, clustering (i) speed of responses, (ii) intensity of responses, and (iii) responses to food into separate dimensions. Rural and urban small mammals did not differ in most responses to novelty, suggesting that urban habitats do not reduce neophobia in these species. Further studies investigating whether comparable response patters are found throughout different stages of colonization, and along synurbanization processes of different duration, will help illuminate the dynamics of animals’ cognitive adjustments to urban life. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1226 KW - animal cognition KW - anthropogenic environment KW - HIREC KW - novelty KW - neophobia KW - neophilia KW - rodents KW - urbanization Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-543863 SN - 1866-8372 ER - TY - JOUR A1 - Schlägel, Ulrike E. A1 - Signer, Johannes A1 - Herde, Antje A1 - Eden, Sophie A1 - Jeltsch, Florian A1 - Eccard, Jana A1 - Dammhahn, Melanie T1 - Estimating interactions between individuals from concurrent animal movements JF - Methods in ecology and evolution : an official journal of the British Ecological Society N2 - Animal movements arise from complex interactions of individuals with their environment, including both conspecific and heterospecific individuals. Animals may be attracted to each other for mating, social foraging, or information gain, or may keep at a distance from others to avoid aggressive encounters related to, e.g., interference competition, territoriality, or predation. With modern tracking technology, more datasets are emerging that allow to investigate fine‐scale interactions between free‐ranging individuals from movement data, however, few methods exist to disentangle fine‐scale behavioural responses of interacting individuals when these are highly individual‐specific. In a framework of step‐selection functions, we related movements decisions of individuals to dynamic occurrence distributions of other individuals obtained through kriging of their movement paths. Using simulated data, we tested the method's ability to identify various combinations of attraction, avoidance, and neutrality between individuals, including asymmetric (i.e. non‐mutual) behaviours. Additionally, we analysed radio‐telemetry data from concurrently tracked small rodents (bank vole, Myodes glareolus) to test whether our method could detect biologically plausible behaviours. We found that our method was able to successfully detect and distinguish between fine‐scale interactions (attraction, avoidance, neutrality), even when these were asymmetric between individuals. The method worked best when confounding factors were taken into account in the step‐selection function. However, even when failing to do so (e.g. due to missing information), interactions could be reasonably identified. In bank voles, responses depended strongly on the sexes of the involved individuals and matched expectations. Our approach can be combined with conventional uses of step‐selection functions to tease apart the various drivers of movement, e.g. the influence of the physical and the social environment. In addition, the method is particularly useful in studying interactions when responses are highly individual‐specific, i.e. vary between and towards different individuals, making our method suitable for both single‐species and multi‐species analyses (e.g. in the context of predation or competition). KW - attraction-avoidance KW - fine-scale interactions KW - individual variability KW - inter-specific interactions KW - movement behaviour KW - occurrence estimates KW - social environment KW - step-selection function Y1 - 2019 U6 - https://doi.org/10.1111/2041-210X.13235 SN - 2041-210X SN - 2041-2096 VL - 10 IS - 8 SP - 1234 EP - 1245 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Scheffler, Christiane A1 - Dammhahn, Melanie T1 - Feminization of the fat distribution pattern of children and adolescents in a recent German population JF - American journal of human biology : the official journal of the Human Biology Council N2 - Objectives During the early 1990s, the economic and political situation in eastern Germany changed overnight. Here, we use the rare chance of an experiment-like setting in humans and aim to test whether the rapid change of environmental conditions in eastern Germany in the 1990s led to a change in the sex-specific fat distribution pattern, an endocrine-influenced phenotypic marker. METHODS Based on a cross-sectional data set of 6- to 18-year-old girls and boys measured between 1982-1991 and 1997-2012, we calculated a skinfold ratio of triceps to subscapular and percentage of body fat. Using linear regressions, we tested for differences in percentage of body fat and skinfold ratio between these two time periods. RESULTS We found that the percentage of body fat increased in boys and girls, and they accumulated relatively more fat on extremities than on the trunk in all BMI groups measured after 1997 as compared to those measured between 1982 and 1991. CONCLUSIONS Concurrent with drastic and rapid changes of environmental conditions, the body fat distribution of children and adolescents changed to a more feminized pattern during the early 1990s in an East German population. The changes in this endocrinologically mediated pattern might be associated with the increased exposure of individuals to endocrine-disrupting chemicals which are known to influence the endocrine, reproductive, and immune systems in animals and humans. Y1 - 2017 U6 - https://doi.org/10.1002/ajhb.23017 SN - 1042-0533 SN - 1520-6300 VL - 29 PB - Wiley CY - Hoboken ER - TY - GEN A1 - Eccard, Jana A1 - Herde, Antje A1 - Schuster, Andrea C. A1 - Liesenjohann, Thilo A1 - Knopp, Tatjana A1 - Heckel, Gerald A1 - Dammhahn, Melanie T1 - Fitness, risk taking, and spatial behavior covary with boldness in experimental vole populations T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Individuals of a population may vary along a pace-of-life syndrome from highly fecund, short-lived, bold, dispersive “fast” types at one end of the spectrum to less fecund, long-lived, shy, plastic “slow” types at the other end. Risk-taking behavior might mediate the underlying life history trade-off, but empirical evidence supporting this hypothesis is still ambiguous. Using experimentally created populations of common voles (Microtus arvalis)—a species with distinct seasonal life history trajectories—we aimed to test whether individual differences in boldness behavior covary with risk taking, space use, and fitness. We quantified risk taking, space use (via automated tracking), survival, and reproductive success (via genetic parentage analysis) in 8 to 14 experimental, mixed-sex populations of 113 common voles of known boldness type in large grassland enclosures over a significant part of their adult life span and two reproductive events. Populations were assorted to contain extreme boldness types (bold or shy) of both sexes. Bolder individuals took more risks than shyer ones, which did not affect survival. Bolder males but not females produced more offspring than shy conspecifics. Daily home range and core area sizes, based on 95% and 50% Kernel density estimates (20 ± 10 per individual, n = 54 individuals), were highly repeatable over time. Individual space use unfolded differently for sex-boldness type combinations over the course of the experiment. While day ranges decreased for shy females, they increased for bold females and all males. Space use trajectories may, hence, indicate differences in coping styles when confronted with a novel social and physical environment. Thus, interindividual differences in boldness predict risk taking under near-natural conditions and have consequences for fitness in males, which have a higher reproductive potential than females. Given extreme inter- and intra-annual fluctuations in population density in the study species and its short life span, density-dependent fluctuating selection operating differently on the sexes might maintain (co)variation in boldness, risk taking, and pace-of-life. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1258 KW - animal personality KW - automated radio telemetry KW - behavioral type KW - fitness KW - home range KW - Microtus arvalis KW - parentage KW - reproductive success Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-558866 SN - 1866-8372 SP - 1 EP - 15 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - JOUR A1 - Eccard, Jana A1 - Herde, Antje A1 - Schuster, Andrea C. A1 - Liesenjohann, Thilo A1 - Knopp, Tatjana A1 - Heckel, Gerald A1 - Dammhahn, Melanie T1 - Fitness, risk taking, and spatial behavior covary with boldness in experimental vole populations JF - Ecology And Evolution N2 - Individuals of a population may vary along a pace-of-life syndrome from highly fecund, short-lived, bold, dispersive “fast” types at one end of the spectrum to less fecund, long-lived, shy, plastic “slow” types at the other end. Risk-taking behavior might mediate the underlying life history trade-off, but empirical evidence supporting this hypothesis is still ambiguous. Using experimentally created populations of common voles (Microtus arvalis)—a species with distinct seasonal life history trajectories—we aimed to test whether individual differences in boldness behavior covary with risk taking, space use, and fitness. We quantified risk taking, space use (via automated tracking), survival, and reproductive success (via genetic parentage analysis) in 8 to 14 experimental, mixed-sex populations of 113 common voles of known boldness type in large grassland enclosures over a significant part of their adult life span and two reproductive events. Populations were assorted to contain extreme boldness types (bold or shy) of both sexes. Bolder individuals took more risks than shyer ones, which did not affect survival. Bolder males but not females produced more offspring than shy conspecifics. Daily home range and core area sizes, based on 95% and 50% Kernel density estimates (20 ± 10 per individual, n = 54 individuals), were highly repeatable over time. Individual space use unfolded differently for sex-boldness type combinations over the course of the experiment. While day ranges decreased for shy females, they increased for bold females and all males. Space use trajectories may, hence, indicate differences in coping styles when confronted with a novel social and physical environment. Thus, interindividual differences in boldness predict risk taking under near-natural conditions and have consequences for fitness in males, which have a higher reproductive potential than females. Given extreme inter- and intra-annual fluctuations in population density in the study species and its short life span, density-dependent fluctuating selection operating differently on the sexes might maintain (co)variation in boldness, risk taking, and pace-of-life. KW - animal personality KW - automated radio telemetry KW - behavioral type KW - fitness KW - home range KW - Microtus arvalis KW - parentage KW - reproductive success Y1 - 2022 U6 - https://doi.org/10.1002/ece3.8521 SN - 2045-7758 SP - 1 EP - 15 PB - John Wiley & Sons, Inc. CY - Vereinigte Staaten ER - TY - JOUR A1 - Milles, Alexander Benedikt A1 - Dammhahn, Melanie A1 - Jeltsch, Florian A1 - Schlägel, Ulrike A1 - Grimm, Volker T1 - Fluctuations in density-dependent selection drive the evolution of a pace-of-life syndrome within and between populations JF - The American naturalist : a bi-monthly journal devoted to the advancement and correlation of the biological sciences N2 - The pace-of-life syndrome (POLS) hypothesis posits that suites of traits are correlated along a slow-fast continuum owing to life history trade-offs. Despite widespread adoption, environmental conditions driving the emergence of POLS remain unclear. A recently proposed conceptual framework of POLS suggests that a slow-fast continuum should align to fluctuations in density-dependent selection. We tested three key predictions made by this framework with an ecoevolutionary agent-based population model. Selection acted on responsiveness (behavioral trait) to interpatch resource differences and the reproductive investment threshold (life history trait). Across environments with density fluctuations of different magnitudes, we observed the emergence of a common axis of trait covariation between and within populations (i.e., the evolution of a POLS). Slow-type (fast-type) populations with high (low) responsiveness and low (high) reproductive investment threshold were selected at high (low) population densities and less (more) intense and frequent density fluctuations. In support of the predictions, fast-type populations contained a higher degree of variation in traits and were associated with higher intrinsic reproductive rate (r(0)) and higher sensitivity to intraspecific competition (gamma), pointing to a universal trade-off. While our findings support that POLS aligns with density-dependent selection, we discuss possible mechanisms that may lead to alternative evolutionary pathways. KW - pace-of-life syndrome KW - density dependence KW - life history KW - trait KW - variation KW - model KW - personality Y1 - 2022 U6 - https://doi.org/10.1086/718473 SN - 0003-0147 SN - 1537-5323 VL - 199 IS - 4 SP - E124 EP - E139 PB - Univ. of Chicago Press CY - Chicago ER - TY - GEN A1 - Mendes Ferreira, Clara A1 - Dammhahn, Melanie A1 - Eccard, Jana T1 - Forager-mediated cascading effects on food resource species diversity T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Perceived predation risk varies in space and time. Foraging in this landscape of fear alters forager-resource interactions via cascading nonconsumptive effects. Estimating these indirect effects is difficult in natural systems. Here, we applied a novel measure to quantify the diversity at giving-up density that allows to test how spatial variation in perceived predation risk modifies the diversity of multispecies resources at local and regional spatial levels. Furthermore, we evaluated whether the nonconsumptive effects on resource species diversity can be explained by the preferences of foragers for specific functional traits and by the forager species richness. We exposed rodents of a natural community to artificial food patches, each containing an initial multispecies resource community of eight species (10 items each) mixed in sand. We sampled 35 landscapes, each containing seven patches in a spatial array, to disentangle effects at local (patch) and landscape levels. We used vegetation height as a proxy for perceived predation risk. After a period of three nights, we counted how many and which resource species were left in each patch to measure giving-up density and resource diversity at the local level (alpha diversity) and the regional level (gamma diversity and beta diversity). Furthermore, we used wildlife cameras to identify foragers and assess their species richness. With increasing vegetation height, i.e., decreasing perceived predation risk, giving-up density, and local alpha and regional gamma diversity decreased, and patches became less similar within a landscape (beta diversity increased). Foragers consumed more of the bigger and most caloric resources. The higher the forager species richness, the lower the giving-up density, and alpha and gamma diversity. Overall, spatial variation of perceived predation risk of foragers had measurable cascading effects on local and regional resource species biodiversity, independent of the forager species. Thus, nonconsumptive predation effects modify forager-resource interactions and might act as an equalizing mechanism for species coexistence. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1312 KW - coexistence KW - functional traits KW - giving-up density KW - landscape of fear KW - perceived predation risk Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-585092 SN - 1866-8372 IS - 1312 ER - TY - JOUR A1 - Mendes Ferreira, Clara A1 - Dammhahn, Melanie A1 - Eccard, Jana T1 - Forager-mediated cascading effects on food resource species diversity JF - Ecology and Evolution N2 - Perceived predation risk varies in space and time. Foraging in this landscape of fear alters forager-resource interactions via cascading nonconsumptive effects. Estimating these indirect effects is difficult in natural systems. Here, we applied a novel measure to quantify the diversity at giving-up density that allows to test how spatial variation in perceived predation risk modifies the diversity of multispecies resources at local and regional spatial levels. Furthermore, we evaluated whether the nonconsumptive effects on resource species diversity can be explained by the preferences of foragers for specific functional traits and by the forager species richness. We exposed rodents of a natural community to artificial food patches, each containing an initial multispecies resource community of eight species (10 items each) mixed in sand. We sampled 35 landscapes, each containing seven patches in a spatial array, to disentangle effects at local (patch) and landscape levels. We used vegetation height as a proxy for perceived predation risk. After a period of three nights, we counted how many and which resource species were left in each patch to measure giving-up density and resource diversity at the local level (alpha diversity) and the regional level (gamma diversity and beta diversity). Furthermore, we used wildlife cameras to identify foragers and assess their species richness. With increasing vegetation height, i.e., decreasing perceived predation risk, giving-up density, and local alpha and regional gamma diversity decreased, and patches became less similar within a landscape (beta diversity increased). Foragers consumed more of the bigger and most caloric resources. The higher the forager species richness, the lower the giving-up density, and alpha and gamma diversity. Overall, spatial variation of perceived predation risk of foragers had measurable cascading effects on local and regional resource species biodiversity, independent of the forager species. Thus, nonconsumptive predation effects modify forager-resource interactions and might act as an equalizing mechanism for species coexistence. KW - coexistence KW - functional traits KW - giving-up density KW - landscape of fear KW - perceived predation risk Y1 - 2022 U6 - https://doi.org/10.1002/ece3.9523 SN - 2045-7758 VL - 12 IS - 11 PB - John Wiley & Sons ER - TY - THES A1 - Dammhahn, Melanie T1 - From individual variation to community structure : paterns, determinants and consequences of within- and between-species variation in behaviour, life-history and ecology Y1 - 2019 ER - TY - JOUR A1 - Steinhoff, Philip O. M. A1 - Warfen, Bennet A1 - Voigt, Sissy A1 - Uhl, Gabriele A1 - Dammhahn, Melanie T1 - Individual differences in risk-taking affect foraging across different landscapes of fear JF - Oikos N2 - One of the strongest determinants of behavioural variation is the tradeoff between resource gain and safety. Although classical theory predicts optimal foraging under risk, empirical studies report large unexplained variation in behaviour. Intrinsic individual differences in risk-taking behaviour might contribute to this variation. By repeatedly exposing individuals of a small mesopredator to different experimental landscapes of risks and resources, we tested 1) whether individuals adjust their foraging behaviour according to predictions of the general tradeoff between energy gain and predation avoidance and 2) whether individuals differ consistently and predictably from each other in how they solve this tradeoff. Wild-caught individuals (n = 42) of the jumping spiderMarpissa muscosa, were subjected to repeated release and open-field tests to quantify among-individual variation in boldness and activity. Subsequently, individuals were tested in four foraging tests that differed in risk level (white/dark background colour) and risk variation (constant risk/variable risk simulated by bird dummy overflights) and contained inaccessible but visually perceivable food patches. When exposed to a white background, individuals reduced some aspects of movement and foraging intensity, suggesting that the degree of camouflage serves as a proxy of perceived risk in these predators. Short pulses of acute predation risk, simulated by bird overflights, had only small effects on aspects of foraging behaviour. Notably, a significant part of variation in foraging was due to among-individual differences across risk landscapes that are linked to consistent individual variation in activity, forming a behavioural syndrome. Our results demonstrate the importance of among-individual differences in behaviour of animals that forage under different levels of perceived risk. Since these differences likely affect food-web dynamics and have fitness consequences, future studies should explore the mechanisms that maintain the observed variation in natural populations. KW - animal personality KW - behavioural syndrome KW - foraging KW - jumping spider KW - landscape of fear KW - risk-reward tradeoff Y1 - 2020 U6 - https://doi.org/10.1111/oik.07508 SN - 0030-1299 SN - 1600-0706 VL - 129 IS - 12 SP - 1891 EP - 1902 PB - Wiley CY - Hoboken ER - TY - GEN A1 - Mazza, Valeria A1 - Jacob, Jens A1 - Dammhahn, Melanie A1 - Zaccaroni, Marco A1 - Eccard, Jana T1 - Individual variation in cognitive style reflects foraging and antipredator strategies in a small mammal T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - Balancing foraging gain and predation risk is a fundamental trade-off in the life of animals. Individual strategies to acquire, process, store and use information to solve cognitive tasks are likely to affect speed and flexibility of learning, and ecologically relevant decisions regarding foraging and predation risk. Theory suggests a functional link between individual variation in cognitive style and behaviour (animal personality) via speed-accuracy and risk-reward trade-offs. We tested whether cognitive style and personality affect risk-reward trade-off decisions posed by foraging and predation risk. We exposed 21 bank voles (Myodes glareolus) that were bold, fast learning and inflexible and 18 voles that were shy, slow learning and flexible to outdoor enclosures with different risk levels at two food patches. We quantified individual food patch exploitation, foraging and vigilance behaviour. Although both types responded to risk, fast animals increasingly exploited both food patches, gaining access to more food and spending less time searching and exercising vigilance. Slow animals progressively avoided high-risk areas, concentrating foraging effort in the low-risk one, and devoting >50% of visit to vigilance. These patterns indicate that individual differences in cognitive style/personality are reflected in foraging and anti-predator decisions that underlie the individual risk-reward bias. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 761 KW - voles clethrionomys-glareolus KW - coping styles KW - bank voles KW - behavioral flexibility KW - trade-offs KW - exploratory-behavior KW - mustelid predation KW - social information KW - animal personality KW - stress Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-437118 SN - 1866-8372 IS - 761 ER - TY - JOUR A1 - Mazza, Valeria A1 - Jacob, Jens A1 - Dammhahn, Melanie A1 - Zaccaroni, Marco A1 - Eccard, Jana T1 - Individual variation in cognitive style reflects foraging and antipredator strategies in a small mammal JF - Scientific Reports N2 - Balancing foraging gain and predation risk is a fundamental trade-off in the life of animals. Individual strategies to acquire, process, store and use information to solve cognitive tasks are likely to affect speed and flexibility of learning, and ecologically relevant decisions regarding foraging and predation risk. Theory suggests a functional link between individual variation in cognitive style and behaviour (animal personality) via speed-accuracy and risk-reward trade-offs. We tested whether cognitive style and personality affect risk-reward trade-off decisions posed by foraging and predation risk. We exposed 21 bank voles (Myodes glareolus) that were bold, fast learning and inflexible and 18 voles that were shy, slow learning and flexible to outdoor enclosures with different risk levels at two food patches. We quantified individual food patch exploitation, foraging and vigilance behaviour. Although both types responded to risk, fast animals increasingly exploited both food patches, gaining access to more food and spending less time searching and exercising vigilance. Slow animals progressively avoided high-risk areas, concentrating foraging effort in the low-risk one, and devoting >50% of visit to vigilance. These patterns indicate that individual differences in cognitive style/personality are reflected in foraging and anti-predator decisions that underlie the individual risk-reward bias. KW - animal personality KW - bank voles KW - behavioral flexibility KW - coping styles KW - exploratory-behavior KW - mustelid predation KW - social information KW - stress KW - trade-offs KW - voles clethrionomys-glareolus Y1 - 2019 U6 - https://doi.org/10.1038/s41598-019-46582-1 SN - 2045-2322 VL - 9 PB - Macmillan Publishers Limited, part of Springer Nature CY - London ER - TY - JOUR A1 - Dammhahn, Melanie A1 - Landry-Cuerrier, Manuelle A1 - Reale, Denis A1 - Garant, Dany A1 - Humphries, Murray M. T1 - Individual variation in energy-saving heterothermy affects survival and reproductive success JF - Functional ecology : an official journal of the British Ecological Society N2 - 1. Given fundamental energetic trade-offs among growth, maintenance and reproduction, individual differences in energy saving should have consequences for survival and reproductive success. Many endotherms use periodic heterothermy to reduce energy and water requirements and individual variation in heterothermy should have fitness consequences. However, attempts to disentangle individual- and population-level variation in heterothermy are scarce. 2. Here, we quantified patterns of heterothermy of 55 free-ranging eastern chipmunks (Tamias striatus), food-hoarding hibernators. Over five hibernation periods, we obtained a total of 7108 daily individual heterothermy indices (median: 118 per individual). 3. Based on an individual reaction norm approach, we found that the use of heterothermy was repeatable and varied among individuals of the same population under similar environmental conditions. This among-individual variation had consequences for winter survival and reproductive success. Individuals using less heterothermy at the beginning of the winter had decreased survival in resource-rich but not in resource-poor years and higher reproductive success in the subsequent breeding season. 4. These results support the hypothesis that fluctuating selection maintains heterothermic diversity and suggest that individualized ecophysiology can contribute to a more thorough understanding of the evolution of energy-saving strategies in endotherms. KW - fitness consequences KW - hibernation KW - individual differences KW - individual reaction norm KW - Tamias striatus KW - torpor Y1 - 2017 U6 - https://doi.org/10.1111/1365-2435.12797 SN - 0269-8463 SN - 1365-2435 VL - 31 SP - 866 EP - 875 PB - Wiley CY - Hoboken ER -